
Data Augmentation via Diversity Enhancement
Group Manual Intelligence Lab

Yuda Fan
ETH Zürich

yudfan@ethz.ch

Jinfan Chen
ETH Zürich

jinfchen@ethz.ch

Abstract—Text classification with deep learning has been
paid increasing attention during past few years. To help models
better understand the text, many data augmentation techniques
were proposed. However, the majority of them oversee the
structure of the sentence, making them less effective. In our
paper, we proposed a simple but novel data augmentation
method based on word embedding, which just duplicates one
word in each data entry. Empirically, evaluating on the Twitter
dataset, extensive experiments prove that our method can be
generally adopted with different models and can improve their
performance by a notable margin.

I. INTRODUCTION

Text classification is the task to assign a document to a
specific category. In our paper, we focus on distinguishing
the sentiment emotion behind the text (positive or negative).
Last decade has witnessed the popularity of microblog such
as Twitter, which also raising up the importance to classify
a short text. Most of the early methods rely on the word
embedding technique, which tried to map the words into the
vector space and directly aggregate words embedding into
sentence embedding. As the attention mechanism is raised
in [1], Seq2Seq models like BERT [2], GPT-3 [3] and MT-
DNN [4] based on Transformer architecture have played a
critical role in such tasks since then.

However, challenge is that microblogs are usually very
short and sparse, relatively increasing the magnitude of the
noise in the text, making our models hard to grasp the
meaning and pay attention correctly. Hence, such small
dataset would make trained models less generalized and
more vulnerable to adversarial attacks [5]. Therefore, data
augmentation on text is proposed to improve the model
performance and robustness.

In our paper, we firstly analyze the drawbacks of the
traditional sentence embedding method which is called Col-
lapse on Similar Majority. Additionally, we define the
diversity of the sentence and find the most critical word
in the whole sentence. According to that, we propose a
simple data augmentation technique which just replicates
the most important word in each sentence located by us.
This method is quite general, efficient, and works well
with various models like xgboost, FastText and BERT-based
Transformer.

In a nutshell, our contributions are:
1) Analyze the drawbacks of traditional sentence em-

bedding methods based on word embedding. We discover
that simply aggregate the word vectors may overlook the
structure and the sentiment contribution of each single word.
We deeply analyze the reason why weighted average word
vectors into sentence vectors may attribute inappropriate
importance to single words.

2) Propose a data augmentation strategy via diversity
enhancement. Based on the latent variable generative model
proposed by [6], we define the diversity of the sentiment of
the sentence based on the embedding of its words. According
to the diversity contribution of each single words, we can
pick out the most important word in the sentence, and
replicate it once to guide the attention of the learning models.

3) Extensive experiments to demonstrate the effective-
ness. We adopt our data augmentation with three baselines,
including xgboost, Fasttext and BERT-based Transformer,
and our method achieve notable improvement on all three
baselines almost without increasing training cost.

II. RELATED WORKS

Word Embedding. Word embedding is to map the words
into low dimensional vector space, in which the similarity
of words is represented by cosine similarity of word vectors.
There are two typical ways to get word embedding among a
large corpus. One is to learn vector representations according
to latent representation of neural networks like [7] and [8].
The other is to compute the low rank approximation of the
co-occurrence matrix like Glove [9].

Sentence Embedding. Based on word embedding, un-
weighted average of the word vectors is regarded as the
sentence vector by [8]. Besides, weighted average associated
with TF-IDF is widely used to generate the sentence vector.
Addition to that, recurrent neural tensor networks on a parse
tree is employed to compute the compositional effects of
word sentiment in [10].

Attention Mechanism. In sequence to sequence learning,
encoder-decoder models are widely used. In order to prevent
the important context from being lost during processing
a long sequence, attention mechanism was introduced by
[11], which allows the model to focus on specific part of

the input sequences. Based on this mechanism, Transformer
backbone is proposed by [1] which includes scaled dot-
product attention and multi-head attention.

Data Augmentation. Data Augmentation includes tech-
niques that enhance and enrich the original data for
better performance. [12] introduces several successful
data augmentation methods in NLP, among which Back-
translation [13] and adding random perturbation [14] are the
most common approaches. This paper follows a different
path of replicating important words in training sentences.
Our method seeks to diversify the sentences so that the
classifier can make better predictions.

III. METHODOLOGY

We first introduce the preliminary of latent variable gen-
erative model. Based on that, we analyze the drawback
of traditional sentence embedding. Finally, we propose our
own data augmentation that exploits the diversity of word
embedding.

A. Review on Latent Variable Generative Model

Given that v : w → Rd is a word embedding from
vocabulary w to vector space Rd. We regard the generation
of the sentence as a temporal dynamic process where at step
t is the t-th word vector vt correspond to the word wt is
emitted. For each time step t, we model the prefix of the
sentence by a latent discourse variable ct which capture the
central sentiment of the previous words,

Pr[vector vt emitted at step t] ∝ exp(c⊤t vt). (1)

Proposed by [8], we can approximate the discourse vector
ct by unweighted average of the word vectors,

ct =
1

t− 1

t−1∑
i=1

vi.. (2)

Therefore,

Pr[sentence s is emitted] ∝
∏
i ̸=j

exp(v⊤i vj), (3)

indicating that we can approximate the likelihood of the
sentence s by the pairwise exponential cosine similarity
between its words.

B. Drawbacks of Traditional Sentence Embedding

Given a sentence s consisting of words wi whose word
vector is vi, the sentence vector vs is commonly regarded
as the weighted average of word vectors vi,

vs =

t∑
i=1

fivi, fi ∈ (0, 1), (4)

where fi is usually picked as the normalized term fre-
quency–inverse document frequency (also known as TF-IDF
score). However, TF-IDF score neglects the spatial structure

of the word vectors, leading it to paying attention to those
words which may not contribute much to the sentiment.

Consider the following simple restaurant review:

Environment is excellent, service is good, chef is excellent,

price is also cheap, dishes are poor.

Among these four adjectives, “excellent” achieves the high-
est TF-IDF scores, “good”, “cheap” and “poor” get the same
TF-IDF score so they are associated with the same weight.
However, both “excellent” and “good” are not critical to
this sentence since if we eliminate any one of them in
this sentence, the sentiment of the review is not changed
significantly because they still have similar words remained.
Nonetheless, if we remove the word “poor”, the sentiment
will be considerably overhauled.

We can these phenomenon by “Collapse on Similar Ma-
jority”: If a single includes several similar words which
is close in the word embedding, they will dominate in
the sentence vector and overwhelms over the other words,
whereas they are not that important.

C. Data Augmentation via Diversity Enhancement

To alleviate such phenomenon, we should guide our model
to pay more attention to those inalienable words, which
contribute more to the diversity of the sentence sentiment,
instead of overemphasizing those words belonging to the
similar majority.

According to equation (4), the sentence vector lies in the
interior of the low dimensional parallelepiped spanned by
those word vectors (see Figure 1 in appendix for detail
illustration for parallelepiped). Therefore, we measure the
diversity of sentence s by the volume of the low dimensional
parallelepiped spanned by its word vectors.

Denote A as the matrix whose columns are word vectors
vi in sentence s (duplicates eliminated). Denote div(s) as
the diversity of sentence s.

div(s) =
√
|det(A⊤A)|, (5)

where det(·) is the determinant of the matrix and A⊤A is
the Gram matrix of the word vectors vi in the inner product
space Rd. Denote the diverse contribution from word vector
vi to sentence s as c(s, vi), we measure this contribution by

c(s, vi) =
div(s)

div(s \ vi)
=

√
|det(A⊤A)|

|det(Mi,i(A⊤
i Ai))|

, (6)

where Ai is the matrix by filling i-th column of A with 0
and Mi,i is the minor of the matrix after excluding the i-th
column and i-th row. As long as vi are linearly independent,
it is guaranteed that div(s) ̸= 0, making this well-defined
(see Appendix for detailed proof).

By computing the diversity contribution of each individual
word, we pick out the most important word with the largest
contribution among the sentence. By replicating it at its first
occurrence, we got a simple data augmentation strategy via
enhancing the diversity of the sentence.

IV. EXPERIMENTS

A. Baselines

We include in total three baselines in our paper,
training them on the original corpus and augmented corpus
separately.

Xgboost: Xgboost is a highly effective, scalable tree
boosting system proposed by [15]. In Xgboost, gradient tree
boosting is employed to optimize the learning objective, and
shrinkage together with column subsampling is adopted to
prevent overfitting. However, due the limited representative
ability of decision tree model, Xgboost achieves the lowest
accuracy (less than 80%) among the three baselines.

Xgboost allows us to train a binary feature vectors
classifier with “binary:hinge” objective. To get feature
vectors, we employ one-hot encoding for the words in
whole vocabulary, and the sentence vector is the weighted
average of the word vectors. Hence, TF-IDF score is
utilized to assign coefficient to word vectors, according to
equation (4).

FastText: Compared to Xgboost which is a universal
feature based machine learning system, FastText is proposed
by [16] especially for learning continuous word representa-
tions. In [16], each word is regarded as a bag of character
n-grams (consecutive n characters) and the word vector is
the summation of character n-gram vectors, which takes
morphology of the words into consideration.

FastText can be directly trained on the labeled corpus
and allow us to make predictions via binary executable
files. Training on the same text, FastText achieve better
accuracy than Xgboost (averaging at 82.0%).

Bert Pre-trained Model: Bert [2] is a class of deep
learning models that leverages the attention mechanisms [1]
for various NLP tasks. Most of its effectiveness comes
from unsupervised pre-training on a large corpus, and the
users can fine-tune the pre-trained weights on specific down-
streaming tasks with smaller-scale labeled data.

We use the publicly available Bert-Base-Uncased pre-
trained model from HuggingFace. The data is preprocessed,
augmented, and tokenized with Bert-Base-Uncased tok-
enizer. After that, the tokenized text data is fed to the
sequence classification pre-trained model for the sentiment
classification task.

The model achieves 87.06% test accuracy without our
diversity enhancement. The performance reaches 87.54%
(our best) with diversity enhancement.

B. Implementations

Preprocessing: All of the experiments runs in our
paper share the common preprocessing. Since Twitter is a
microblog platform in which most of the posts are quite oral
and inform, causing much noise in the dataset.

To clean and normalize the noisy tweets, we first filter out
all the illegal characters and meaningless symbols, including
the ⟨user⟩ and ⟨url⟩ symbols generated by Twitter. Besides,
we restore those most common contraction to its formal
style and correct the most often seen misspellings to make
sure that the same word always has the same representation.
Hence, there are many words whose characters are totally
separated like “w h a t” or “r e a l”, we detect this and
concatenate these single characters together.

Additionally, what is special in Tweets is that posts
may include many tags, which is strings that start with
special character “#” following by several words which are
concatenate consecutively without space like “#believe15”.
In this case, we employ wordninja library [17] to split the
words.

Diversity Enhancement: To get word embeddings, we
employ the Glove library [9], which provides us with pre-
trained model mapping words into 200 dimensional vector
space.

In diversity enhancement step, to avoid the interference
of the stopwords, we only take the 8 words with top 8
highest TF-IDF scores into consideration. Accordingly, we
only conduct diversity enhancement for the sentence with at
least 8 distinct words.

Hence, it should be noticed that different from the
often-seen data augmentation methods, we simply replace
the original text with the modified text, which means the
number of the data entries remains the same. Benefit from
this, our data augmentation almost bring no additional
training cost: it only increases the text file size from 167Mb
to 178Mb, by a ratio of 6.5%.

Back Translation: We have implemented and evaluated
back-translation [13] as an alternative data augmentation
technique. The model translates the preprocessed sentences
from English to Germany, then back to English. The trans-
lated sentences and original sentences are concatenated for a
larger dataset. However, back-translation has not experimen-
tally shown performance improvements towards the vanilla
Bert.

C. Results

Results of our experiments are showed in Table I.
For Xgboost models, we run all the experiments for

“binary:hinge” learning objective and employ “error” as the
evaluation metric. We use the default hyperparameters and
train both models for 600 epochs.

For FastText models, we train each model 10 epochs
for 5 runs. Validation Accuracy is reported as the average
accuracy of 5 runs and Test Accuracy is reported as the pub-
lic score of the selected model with the highest Validation
Accuracy among these 5 runs.

For the Bert model, pre-trained weights from Hugging-
Face are loaded. We randomly split 95% data as a training
set and 5% validation set. Empirically, the validation loss
converges within three epochs for all Bert experiments. And
the best model from 3 epochs is chosen to report accuracy
values in the table. The training batch size is set to be 16.
Although more than half of the sequences are longer than
64, we found that the performance does not decrease with
sequence length, and hence we use a maximum sequence
length of 64 for faster experiments.

Methods Validation Accuracy Test Accuracy

One-Hot Encoding + Xgboost 76.39 75.86
+Diversity Enhancement 77.37 76.90

FastText 82.05 81.60
+Diversity Enhancement 81.95 81.80

Bert basew/o aug 88.68 87.06
+Back-translation 88.45 86.80
+Diversity Enhancement 88.70 87.54

Table I: Accuracy results for different models we evaluated.
Bert with data diversity enhancement performs best on both
validation and test sets.

Analysis: For Xgboost, it is noticed that diversity
enhancement improve it by a notable advancement since
Xgboost models are feature based and we employ the TF-
IDF scores as our weights. Enhancing the diversity of
sentence will significantly change the sentence embedding.
Actually, after 400 epochs of training, Xgboost models with
data augmentation is almost as good as the baseline model,
which is trained for 600 epochs, measured in validation
accuracy.

For FastText, we could observe that diversity enhancement
merely improve it by a marginal difference. The reason
is that FastText set minimum and maximum occurrence
threshold for words, and only the word with appearances
in this interval will be taken into consideration. Therefore,
simply replicate those important words may make FastText
excluded some words out of the dictionary, leading to the
shrinkage of vocabulary size. Hence, FastText focus on the
character-level n-grams, while our data augmentation pay
more attention on the word level.

For Bert, we observed performance improvement in both
validation and test accuracy using diversity enhancement.
The validation set is large, so the validation accuracy has
slight variance but is biased. However, the test set is unbiased
but with a more significant variance. Diversity enhancement
achieves better scores in both cases is a strong argument
for its effectiveness. The Bert model has an inherent atten-
tion mechanism, and we conjecture diversity enhancement

increases the probability that the model pays attention to
more important words. Consequently, the model performs
better with diversity-enhanced data.

V. CONCLUSION

In this paper, we highlight a performance collapse of
traditional sentence embedding methods which is a linear
combination of word embeddings. Derived from the latent
variable generative model, we propose the diversity of a
sentence, which is measured by the volume of parallelepiped
spanned by word vectors. Based on the concept, we could
simply locate the most critical words among the sentence.
By replicating it just for once, we could simply improve the
performance of various models almost without increasing
training cost.

REFERENCES

[1] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” ArXiv, vol. abs/1706.03762, 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” ArXiv, vol. abs/1810.04805, 2019.

[3] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits,
and consequences,” Minds and Machines, vol. 30, pp. 681–
694, 2020.

[4] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task
deep neural networks for natural language understanding,”
CoRR, vol. abs/1901.11504, 2019. [Online]. Available:
http://arxiv.org/abs/1901.11504

[5] J. X. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and
Y. Qi, “Textattack: A framework for adversarial attacks, data
augmentation, and adversarial training in nlp,” in EMNLP,
2020.

[6] S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski, “A latent
variable model approach to pmi-based word embeddings,”
Transactions of the Association for Computational Linguis-
tics, vol. 4, pp. 385–399, 2016.

[7] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” in J. Mach. Learn. Res., 2000.

[8] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” in ICLR,
2013.

[9] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global
vectors for word representation,” in EMNLP, 2014.

[10] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning,
A. Ng, and C. Potts, “Recursive deep models for semantic
compositionality over a sentiment treebank,” in EMNLP,
2013.

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” CoRR,
vol. abs/1409.0473, 2015.

[12] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi,
T. Mitamura, and E. H. Hovy, “A survey of data augmentation
approaches for NLP,” CoRR, vol. abs/2105.03075, 2021.
[Online]. Available: https://arxiv.org/abs/2105.03075

[13] R. Sennrich, B. Haddow, and A. Birch, “Improving neural
machine translation models with monolingual data,” in Pro-
ceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Association
for Computer Linguistics, 2016.

[14] J. Wei and K. Zou, “EDA: Easy data augmentation techniques
for boosting performance on text classification tasks,” in
EMNLP-IJCNLP, 2019.

[15] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
2016.

[16] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enrich-
ing word vectors with subword information,” Transactions
of the Association for Computational Linguistics, vol. 5, pp.
135–146, 2017.

[17] D. Anderson, “Wordninja,” https://github.com/keredson/
wordninja, 2017.

APPENDIX

Parallelepiped Illustration

Figure 1: A illustration for parallelepiped from Wikipedia
.

Figure 1 shows a directed parallelepiped spanned by three
vectors r1, r2 and r3. Notice that this is a projection in a
3D dimensional subspace, ri may have much more higher
dimensions.

Proof: Invertible Gram Matrix is Equivalent to Linear
Independency

Take G = A⊤A, we will justify that G is invertible if and
only if A is linearly independent in coloumns.

⇒: Proof by inverse negative proposition. Suppose A is
linearly dependent in columns, there exists a solution u ̸= 0
of the linear system Au = 0. Therefore,

Gu = A⊤Au = 0,

implying that G is not invertible.
⇐: Still prove by inverse negative proposition. Suppose

G is not invertible, there exist u ̸= 0 such that Gu = 0.
Therefore,

u⊤Gu = (Au)⊤(Au) = ∥Au∥22 = 0.

Thus, Au = 0, indicating that A is linearly dependent in
columns.

