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幾何学の本質は、性質だけではありません要素 (必ずしも多様体である
必要はない)だけでなく、方法でもこれらの要素が構成されています。

私たちは、幾何学は自然法則つであると信じています、自然自体は面
白くて美しいです。

The essential point in geometry does not only lie in the properties of
the elements (which are not necessarily manifolds), but also in the ways
these elements are composed.

We believe that geometry reveals laws of the nature, and nature itself is
interesting and beautiful.

出現の根本原理 【イコリア：巨獣の棲処】
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Abstract

The hidden point problem, is to arrange as many as possible points
in a given polygon, such that any two of them are invisible to each
other. When these points must be positioned on the vertices of
the polygon, it is called the hidden vertex problem. Both of them
have been proved to be hard visibility problems, in terms of either
decision or approximation.

Since they were proposed, many efforts have been made to capture
their hardness, devise approximation algorithms, and solve them
efficiently in certain type of polygons. In our thesis, these endeavors
are continued, and our results are highlighted in a 2

3 -approximation
algorithm of the maximum hidden vertex set in a pseudotriangle,
and an exact algorithm for maximum hidden point set in a terrain
or fan-shaped polygon. Notably, both of them run in polynomial
time, and it is the first time they are resolved or provided with
a non-trivial approximation. Concurrently, we also show that the
decision problem of hidden points is in ∃R.

Besides, the hidden points and hidden vertices are also closely
related to other topics, including visibility graph, k-convexity, and
convex covering. In this thesis, we introduce novel combinatorial
and geometric structures such as convex/reflex chains, set system
of visible areas, and the continuous visibility graph, entitling us to
establish original arguments and fresh insights in these realms.
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[n] the set {1, 2, · · · , n}
2X the power set of X
G graph
G the complement graph of G
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P(u, v) polygonal chain of ∂P from point u to v
HP(P) hidden point number of P
HV(P) hidden vertex number of P
Cover(P) convex covering number of P
Partition(P) convex partition number of P
VG(P) visibility graph of P
CVG(P) continuous visibility graph of P
uv the segment connecting the point u and v
−→uv the ray starting from u and oriented to v
X point set in the plane
int(X) interior of X
relint(X) relative interior of X
conv(X) convex hull of X
B(u, r) ball centering at point u with radius r
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Chapter 1

Introduction

Given a polygon in the plane, a hidden point set is a set of points in the
polygon such that any two of them are not visible to each other. If these
points have further been placed on the vertices of the polygon, it is also
called a hidden vertex set. To find the largest possible hidden point set
and hidden vertex set in a specific polygon, are the primary problems
which this thesis has the most keen interests on.

Figure 1.1: A hidden point set Figure 1.2: A hidden vertex set

Hidden Points and Hidden Vertices. Upon they were proposed in [43],
they were immediately proven to be NP-hard. This means a polynomial
time algorithm is not likely to exist, and they have been considered to
be hard visibility problems so far. Since then, many efforts have been
committed to solve them in specific class of polygons, for instance, weak
visibility polygon [28], fan-shaped polygon [29], and funnel polygon [9].

In addition to finding the exact optimal solution, efficient approximation
algorithms have also been paid a lot of attention. Given a simple polygon
with n vertices, [7] proposed an O(n2) time algorithm to compute a 1/4-
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1. Introduction

approximation of the maximum hidden vertex set , while [10] presented
an O(n2+o(1)) time algorithm that provides us with a 1/8-approximation
of the maximum hidden point set. Both algorithms are based on the
staged illumination technique [47], and are known as the first constant
factor approximation for the corresponding problem.

Of course, these two problems are not isolated islands in the kingdom
of computational geometry. Instead, through the study on them, the
following topics have been shown intimately connected to them.

Visibility Graph. The visibility graph is an important combinatorial
structure in computational geometry. In the visibility graph of a polygon,
a pair of vertices are connected if they are visible to each other. Before
the hidden point problem was proposed, the visibility graph had already
demonstrated its importance by playing a critical role in many geometry
algorithms, such as computing the geodesic path in presence of obstacles
[35] and decomposing the two dimensional shape [42].

To compute the visibility graph of a polygon, [49] proposed an O(n2)
algorithm, followed by [31] presenting an O(m + n log log n) algorithm,
where m is number of the edges in the visibility graph. With the linear
time triangulation algorithm in [13], the one in [31] was further improved
to O(n + m).

Deciding whether the given graph is the visibility graph of a polygon or
not, is referred to as the recognition problem, which is indeed another
primary objective in the study of visibility graphs. [23] showed that it
is in the complexity class ∃R, but whether it belongs to NP or not has
remained open so far. There are many attempts to propose necessary
conditions for the visibility graph, including [26, 27, 1], but none of
them has been proven to be sufficient up to now. Though this problem
is considered to be hard in general case, the visibility graph of some
special classes of polygon still can be recognized efficiently, likewise
spiral polygon [24] and funnel polygon [14].

NP Optimization Problem. NP optimization problem class is a class
of mathematical optimization problems, of which the recognition of the
instance, feasibility of the solution, and the objective function can always
be computed in polynomial time. Since it was proposed in [16], many
hard optimization problems have been located in its compendium. A
notable result closely related to our thesis it that [19] showed that the
hidden vertex problem is APX-hard, even if the polygon does not have
holes. Meanwhile, [19] also proved that there exists ε > 0 such that the
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maximum hidden point set can not be approximated by a polynomial
algorithm within 1 + ε unless P = NP.

Existential Theory of the Reals. The complexity class ∃R has been a
cornerstone in computational geometry and algebraic geometry, which
includes many famous geometry problems. For example, [32] showed
that the deciding whether a graph is the intersection graphs of line
segments or not is in ∃R, and [40] proved that the recognition of unit
distance graphs also belongs to ∃R. Besides, [5] shows that the well-
established art gallery problem is ∃R-complete.

Convex Covering. A convex covering of a polygon is a set of convex
pieces, of which the union is exactly the same as the polygon. To find
the convex covering with least possible number of pieces, called the
convex covering problem, is closely related to the hidden point problem.
The first notable result in its history was [36] showed that the convex
covering with Steiner points is decidable. Later, [17] proved that it is
NP-hard to decide whether a polygon can be covered by certain number
of convex pieces, even if the polygon is simple. The first non-trivial
approximation algorithm is given by [20], in which their algorithm has
an O(log n) approximation ratio guarantee. When it comes to covering a
simple polygon, [10] presented a 6-approximation algorithm, which is
the best approximation ratio known so far.

Our Contributions. Our main contributions can be highlighted in the
following aspects, in the order by which they are arranged in this thesis.

• We established a series of combinatorial proposition about maxi-
mum hidden point set, maximum hidden vertex set, and minimum
convex covering. We illustrated how the number of holes guar-
antees the lower and upper bounds in Lemma 3.15 and Lemma
3.16. This problem is originated from the open problem workshop
GWOP’23 and we partially answered it.

• We firstly discussed the structure of the visible area, by character-
ization of its Steiner points and windows. As the VC-dimension
is an important metric to evaluate the complexity of a set system,
we prove that the set system of the visible areas have finite VC-
dimension, which is upper bounded by the logarithm of number of
reflex vertices in Lemma 4.14.

• Whether irrational points are needed in the optimal solution or
not is a critical point in many geometry problems. For example,
[4] showed that sometimes they are necessary for the art gallery
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1. Introduction

problem. We proved that the irrational coordinates are unnecessary
for hidden point set in Lemma 5.5, and investigate if the hidden
point problem belongs to NPO in Lemma 5.12.

• Up to now, the upper bound on complexity of the hidden point
problem has not been precisely captured. We proved that it belongs
to the complexity class ∃R in Theorem 5.28.

• We introduced a generalized definition of convex chain and reflex
chain. They used to be part of the boundary of the polygon, but
they are also allowed to travel through the interior. We established
their connection to the hidden point/vertex set and the clique in
Lemma 6.7 and Lemma 6.11.

• The traditional visibility graph can not precisely characterize the
hidden points and convex covering, and that is the reason why
we introduce the continuous visibility graph. We demonstrate its
utilization by connecting it to the hidden point set and convex
covering. Meanwhile, we proved that the continuous visibility
graph of a spiral polygon is chordal in Theorem 6.27.

• How large can the gap between maximum hidden point set and
minimum convex covering be? To answer this, the polygon that
only hosts two hidden points is a cute case to start with. We proved
such polygon needs at most three convex pieces to cover in Lemma
7.19.

• We present a 2
3 -approximation algorithm for finding the maximum

hidden vertex set of the pseudotriangle in Lemma 8.28, which runs
in O(n2) time. Previously, the only known competitive ratio is 1

2 ,
which is indeed trivial.

• We present an O(n2) algorithm in Theorem 9.35, which efficiently
solves the maximum hidden point set in the fan-shaped polygon
and terrain.

Important Remarks. These are the important remarks that our reader
should be aware throughout the thesis.

• The computational model we adopt here is the real RAM model
[41], which means any allowed operation takes O(1) time.

• We assume that geometric objects we discuss about are in an affine
space, unless we specify the origin or the coordinates.

• We assume that the vertices of a polygon are in general position
unless we specify a different assumption.
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• The author himself is positive about P ̸= NP and NP ̸= ∃R, and
there might be normative statements without assuming them.

Acknowledgement. This thesis serves as the diploma thesis at ETH
Zürich, of which Prof. Dr. Bernd Gärtner is the supervisor. Thank him
for his careful supervision, warm-hearted encouragement, and especially
for proofreading the draft.
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Chapter 2

Polygon and Visibility Graph

Polygons are the cornerstone and the fundamental objects in computa-
tional geometry. When it comes to the visibility problems concerning the
polygon, the visibility graph appears as a valuable combinatorial struc-
ture. In this chapter we introduce the basic definitions and background
knowledge about them, especially various classes of polygons.

2.1 Classes of Polygons

2.1.1 Definition of Polygon

Given n ≥ 3 points in the plane with general position, there are many
different ways to connect them with straight-line segments into a cycle,
and thereby resulting in a polygon. Through this process, we can give a
proper definition for the polygon on n points.

Definition 2.1 Let {p0, p1, · · · , pn−1} be n points in the plane, in which only
p0 and pn−1 are allowed to be identical to each other. The polygonal chain
C = (p0, · · · , pn−1) is an ordered set of edges, which is composed by the
segment ei = (pi, pi+1), i ∈ [0, n − 2] consecutively.

Definition 2.2 Let C = (p0, · · · , pn−1) be a polygonal chain, it is called a
closed polygonal chain if p0 = pn−1.

Definition 2.3 Let X = {x1, x2, · · · , xn} be n points in the plane with general
position, the polygon P denote the closed region enclosed 1 by the closed polygonal
chain ∂P = C = (x1, x2, · · · , xn, x1).

1A point is said to be enclosed by a closed curve Γ if either it is in Γ or any connected
path from it to the point of infinity crosses Γ odd times
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2. Polygon and Visibility Graph

Meanwhile, we characterize P by the pair (V, E), where V = X is the vertices
of P, and E = {(xi, xi+1)|i ∈ [n]} is the edges of P.

In this thesis, without specification, we always discuss polygons with
vertices are in general position (any three vertices are not collinear).
For simplicity, we also write P as (x1, x2, · · · , xn), which means P is
a polygon on vertices {x1, x2, · · · , xn} and the edges of P is given by
the closed polygonal chain C = (x1, x2, · · · , xn, x1). Further, we always
assume that xi is indexed in counter-clockwise order2. Meanwhile, when
we write ei = (xi, xi+1) as an edge of a polygon or a polygonal chain, we
actually refer to the segment xixi+1.

2.1.2 Simple Polygon

Definition 2.4 Let a, b be two segments in the plane, which are not collinear to
each other, then segments a and b are called properly intersect with each other if

relint(a) ∩ relint(b) ̸= ∅,

where relint(x) is the relative interior of x.

Definition 2.5 Let P be a polygon, P is called a simple polygon if and only
if ∀e1, e2 ∈ E(P), e1 ̸= e2, e1 and e2 intersect with each other only if they are
consecutive on the boundary of P, in which case they only share a common
endpoint.

Let P be a simple polygon on X. Since E(P) does not intersect with itself,
the edges of P compose a planar simple curve. By the Jordan Curve
Theorem [48], it divides the plane into two disjoint parts: the ”interior”
region inside P and the ”exterior” region which includes the point at
infinity. Denote them by int(P) and ext(P) respectively and the curve
itself by ∂P. Accordingly, we have R2 = ∂P ∪ int(P) ∪ ext(P).

Definition 2.6 Let C = (p0, p1, · · · pn−1) be a polygonal chain without self-
intersection and u, v ∈ C be two distinct points on C. Suppose that u ∈
(ps, ps+1), v ∈ (pt, pt+1), and u appears before v in C.

The subchain C(u, v) is defined as

C(u, v) :=

{
(u, v), s = t,
(u, ps+1, · · · , pt, v), s < t.

2By counter-clockwise order, we are indicating that the interior of P lies one the left
hand side of −−−→xixi+1
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2.1. Classes of Polygons

Definition 2.7 Let P = (p0, p1, · · · pn−1) be a simple polygon, and u, v ∈ ∂P
be two distinct points in ∂. The polygonal chain P(u, v) is defined as the subset
of ∂P which routes from u to v in counter-clockwise order.

Let P be a simple polygon and u, v be two distinct points on its boundary.
There are exactly two polygonal chains through ∂P routed from u to
v, one in clockwise order and another in counter-clockwise order, and
the union of them covers ∂P. Thus, ∂P = P(u, v) ∪ P(v, u), {u, v} =
P(u, v) ∩ P(v, u).

Figure 2.1: The left one indicates P(u, v) and the right one indicates P(v, u).

2.1.3 Polygon with Holes

Definition 2.8 Let P be a simple polygon, a hole H in P is a simple polygon
such that H ⊆ int(P).

Let P be simple polygon and H = {H1, H2, · · · , Hm} be collection of holes such
that

∀i ∈ [m], Hi ⊆ int(P),
∀i ̸= j, Hi ∩ Hj = ∅,

then the polygon Q with holes is defined as Q := P \⋃m
i=1 int(Hi).

Hence, the vertex set of Q is defined as V(Q) := V(P) ∪ V(H1) ∪ · · · ∪
V(Hm), and the edge set of Q is defined as E(Q) := E(P)∪ E(H1)∪ · · · ∪
E(Hm). Further, the polygon P is called the body of Q and H is called
the holes of Q respectively.

2.1.4 Star-shaped polygon

Definition 2.9 Let P be a simple polygon and p, q be two distinct points. p and
q are called visible to each other if and only if pq ⊆ P. We denote the visibility
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2. Polygon and Visibility Graph

between points p and q with regard to polygon P by

IP(p, q) =

{
1, pq ⊆ P,
0, otherwise.

To be specific, we allow the line of vision pq to remain unblocked even if
it touches ∂P. For example, let (u, v) be an edge of P, then u and v are
actually visible to each other.

Definition 2.10 Let P be a simple polygon, P is called a star-shaped polygon if
and only if

∃u, s.t.∀v ∈ P, uv ⊆ P.

Moreover, ker(P), denoting the kernel of P, is defined by

ker(P) := {u|∀v ∈ P, uv ⊆ P}.

Accordingly, P is a star-shaped polygon implies that ker(P) ̸= ∅.

2.1.5 Fan-shaped Polygon

Definition 2.11 Let P be a simple polygon and u ∈ P be a vertex of P, v is
called a convex vertex if its interior angle is less than π and a reflex vertex if its
interior angle is greater than π.

Definition 2.12 Let P be a simple polygon, P is called a fan-shaped polygon
if and only if there exists a convex vertex u ∈ P such that u ∈ ker(P). In this
case, vertex u is called the ”hub” of P,

hub(P) := {u|u ∈ ker(P) ∧ u is a convex vertex of P}.

It is clear that a fan-shaped polygon is also a star-shaped polygon since
ker(P) ⊇ hub(P) ̸= ∅.

Proposition 2.13 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon and
p0 ∈ hub(P), then P admits a fan triangulation [37] T = {(p0, pi, pi+1)|∀i ∈
[n − 2]}, where all the triangles share the common vertex p0.

2.1.6 Spiral Polygon

Definition 2.14 Let P = (p0, p1, · · · , pn−1) be a simple polygon, where p0
is a convex vertex. P is a spiral polygon if and only if all its reflex vertices
are arranged consecutively around the boundary. In other words, there exist
0 < l ≤ r < n such that pi is a reflex vertices if and only if l ≤ i < r.
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2.1. Classes of Polygons

Figure 2.2: P1 is a star-shaped polygon and u ∈ ker(P1), while P2 is a fan-shaped polygon
and v ∈ hub(P2).

2.1.7 Rectilinear Polygon

Definition 2.15 Let P be simple polygon, P is a rectilinear polygon if the
interior angle at each vertex is either 1

2 π or 3
2 π.

Remark 2.16 Let P be a rectilinear polygon and let u = (xu, yu) be the X-Y
coordinates of the vertex u. For convenience, we always assume that the edges of
P are aligned to the axis. In other words, for any edge e = (u, v) of P, we have
either xu = xv or yu = yv.

2.1.8 Terrain

Definition 2.17 A terrain T is a polygonal chain T = (p0, p1, · · · , pn−1) such
that it is strictly x-monotone, which means that ∀i ∈ [0, n − 2], xpi < xpi+1 .

There are two points which we consider very important here.

• The “terrain” in our context actually refers to the 1.5D terrain (which
mean it is monotone in x-coordinates, but free in y-coordinates).
Sometimes in other contexts, people prefer using “terrain” to refer
to the 2.5D terrain.

• Since we are discussing the nature of geometric objects, we are
actually dealing with the affine space, in which the origin and
the coordinates are actually not specified. Therefore, let T be
a polygonal chain, and if there exists a way to equip the affine
space with an origin and X − Y coordinate system such that T is
x-monotone, we say that T is a terrain.

13



2. Polygon and Visibility Graph

2.2 Visibility Graph

2.2.1 Visibility Graph of Simple Polygon and Terrain

Definition 2.18 Let P be a simple polygon on n vertices, the visibility graph of
P, denoted by VG(P), is the graph on the vertices of P such that each pair of
vertices are connected if and only if they are visible to each other.

According to the remark about Definition 2.9, for any edge (u, v) of
the polygon P, it is also an edge of the visibility graph VG(P). There-
fore, given that P = (p0, p2, · · · , pn−1) is a simple polygon, we have its
boundary (p0, p2, · · · , pn−1, p0) is indeed a Hamiltonian cycle in VG(P).

Definition 2.19 Let P be a simple polygon, u be a vertex of P, and X be a set
of vertices of P. We define N(u) as the set of vertices, which is visible from u,
N(u) := {v|v ∈ V(P), uv ⊆ P}. We define N(X) as the set of vertices, which
is visible from any vertex in X, N(X) :=

⋃
u∈X N(u).

Actually, N(u) is the set of vertices which is dominated by vertex u in
the visibility graph.

Similar to the simple polygon, we can also define the visibility graph for
a terrain as follow.

Definition 2.20 Let T be a terrain, and u, v be two points such that u ∈ T and
v ∈ T. Then u and v is considered to visible to each other if uv lies completely
above T.

Figure 2.3: This figure illustrates the visibility on the terrain T. Here, (a, c) is invisible to
each other, while (b, d) is visible to each other.

To be specific, uv is said to be completely above T if and only if there is
no terrain vertex r ∈ V(T) such that r is strictly above the segment uv.

Definition 2.21 Let T be a terrain, its visibility graph VG(T) is defined as
VG(T) = (V, E), where V is the vertices of T and E is the edges connecting
the pair of vertices which are visible to each other.
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2.2. Visibility Graph

Proposition 2.22 Let P be a simple polygon on n vertices, VG(P) can be
computed in time O(n log n + e), where e is the number of edges in VG(P).

Proof This is proved in [31]. □

2.2.2 Recognition and Reconstruction of Visibility Graph

Apart from computing the visibility graph, there are two problems people
shares keen interests on. One is the recognition of the visibility graph.
In other words, for a specific given graph G, decide whether it is the
visibility graph of some simple polygon P or not. However, notice that
to be the visibility graph of a simple polygon, G is necessary to be
Hamiltonian at first, which is already NP-complete to decide. Therefore,
the recognition problem is always defined with a Hamiltonian cycle
specified in G as follow.

Definition 2.23 Let G = (V, E) be a graph and C be a Hamiltonian cycle in
G, the recognition problem is to decide whether there exists a simple polygon P
such that VG(P) is isomorphic to G and the boundary of P corresponds to C.

Another one is the reconstruction of the simple polygon, given its visibil-
ity graph. Similar to the prior one, we could define it as follow.

Definition 2.24 Let G be the visibility graph of the simple polygon P and C
be a Hamiltonian cycle in G. The reconstruction problem is to figure out the
arrangement of the vertices of P in the plane such that VG(P) is isomorphic to
G and the boundary of P corresponds to C.

Sometimes, it is also called the realization of the visibility graph. A graph
G is said to be realizable if such simple polygon exists.

2.2.3 Necessary Conditions for Visibility Graph

We introduce the first two necessary conditions adopted in [26], which is
widely referred after.

Lemma 2.25 [NC1] Let G = (p0, p1, · · · , pn−1) be the visibility graph of a
simple polygon and C = (q0, q1, · · · , qk−1), k ≥ 3 be an ordered cycle in G,
then C has at least k − 3 chords.

Lemma 2.26 [NC2] Let G = (p0, p1, · · · , pn−1) be the visibility graph of a
simple polygon P, and (pi, pj) be a pair of invisible vertices in G, then there
exists a blocking vertex pk with regard to (pi, pj).
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2. Polygon and Visibility Graph

A blocking vertex pk is the vertex such that the polygonal chain routed from pi to
pj via the vertex pk, is partitioned into two independent chains C1 and C2 such
that ∀u ∈ C1, v ∈ C2, u and v are invisible to each other unless u = v = pk.

In essence, the recognition problem itself is to find necessary and suffi-
cient conditions for visibility graph that can be efficiently verified. So far,
the hardness of this problem remains open. But still, there are classes of
polygons whose visibility graphs can be recognized in polynomial time,
for instance, spiral polygons [24] and funnel polygons [14].

In spite of recognizing the visibility graph efficiently, [26] firstly intro-
duced three necessary conditions for simple polygon visibility graphs,
and conjectured that they are already sufficient. However, this conjecture
is refuted by [23] via providing a counter-example and the third necessary
condition was further strengthened in [24]. Unfortunately, [3] proved that
these three conditions are still insufficient. Later, the fourth condition
was proposed in [27], and together with the previous conditions, they are
conjectured to be sufficient conditions as well. Again, it was disproved in
[46]. Therefore, up to now, finding the necessary and sufficient condition
for visibility graph are still continuing.
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Chapter 3

Hidden Points and Hidden
Vertices

A straightforward question arises here, what geometric element within a
polygon helps in concealing more hidden points? Alternatively, how can
we evaluate the potential capacity of a polygon to contain hidden points?

An initial answer would suggest that a polygon with more vertices would
accommodate more hidden points. However, this is refuted by convex
polygons, in which the number of vertices does not help at all. One might
then consider manipulating the boundary by introducing reflex vertices
or excavating holes, thereby creating obstacles to block the visibility.
Intuitively speaking, both strategies seem promising, and we will try to
formalize them in this chapter.

Before stepping into formal proofs, we must first establish the following
necessary definitions.

3.1 Definition

Definition 3.1 Let P be a simple polygon, X ⊆ P be a point set in P.

X is called a hidden point set in P if

∀u ∈ X, v ∈ X, u ̸= v, IP(u, v) = 0.

Definition 3.2 Let P be a simple polygon, X ⊆ V(P) be a subset of vertices of
P.

17



3. Hidden Points and Hidden Vertices

X is called a hidden vertex set in P if

∀u ∈ X, v ∈ X, u ̸= v, IP(u, v) = 0.

Definition 3.3 Let P be a polygon, the hidden point number of P, denoted as
HP(P), is size of maximum hidden point set of P.

Definition 3.4 Let P be a polygon, the hidden vertex number of P, denoted as
HV(P), is size of maximum hidden vertex set of P.

Indeed, HV(P) is the size of the maximum independent set of VG(P),
the visibility graph of P.

Proposition 3.5 Let P be a simple polygon, we have HV(P) ≤ HP(P).

Proof Since V(P) ⊆ P, any hidden vertex set is also a hidden point set.□

Definition 3.6 Let P be a simple polygon, a convex covering of P is a collection
of finite number of convex polygons such that their union is exactly P. Denote
any convex covering of P as Q, then

Q = {Q1, Q2, · · · , Qk},

s.t.
k⋃

i=1

Qi = P.

Similarly, we can also define a convex partition of P by only allowing different Qi
share at most a common vertex or a common edge. Denote the convex partition
of P as Q, then

Q = {Q1, Q2, · · · , Qk},

s.t.
k⋃

i=1

Qi = P.

Qi ∩ Qj ⊆ ∂Qi, ∀i ̸= j.

Accordingly, let Cover(P), Partition(P) be the minimum size of the convex
covering and convex partition of P respectively.

3.2 In Simple Polygon

This section is committed to illustrate some basic facts about the hidden
points and the hidden vertices in simple polygons.
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3.2. In Simple Polygon

Lemma 3.7 Let P be a simply polygon, then we have HP(P) ≤ Cover(P) ≤
Partition(P).

Proof Cover(P) ≤ Partition(P) holds obviously as a convex partition
is always a convex covering. It suffices to show that HP(P) ≤ Cover(P).

Let A ⊆ P be the maximum hidden point set. Let Q be the optimal convex
covering of P and Q = {Q1, Q2, · · · , Qk} and |Q| = Cover(P) = k.

Let Mi = A ∩ Qi. It is clear that ∀i ∈ [k], |Mi| ≤ 1. Otherwise, suppose
that there exist two distinct points u, v ∈ Mi. Since Qi is convex, we have
uv ⊆ Qi ⊆ P, implying that u and v are visible to each other.

Therefore, since A =
⋃k

i=1 Mi, by union bound we have

HP(P) = |A| ≤
k

∑
i=1

|Mi| ≤ k = Cover(P). □

Definition 3.8 Let Q = {Q1, Q2, · · · , Qk} be a convex partition of P, the
Steiner points of the convex partition Q are the extra vertices introduced by Q
which are not vertices of the polygon P. In other words,

SteinerP(Q) =
k⋃

i=1

V(Qi) \ V(P).

Then, Q is said to be a convex partition without Steiner points if and only if
SteinerP(Q) = ∅.

Definition 3.9 Let Q = {Q1, Q2, · · · , Qk} be a convex partition of P, the
planar graph induced by Q is defined as the planar graph represented by the
drawing of Q. In other words, G(Q) = (V, E), where V :=

⋃k
i=1 V(Qi) and

E :=
⋃k

i=1 E(Qi).

Lemma 3.10 Let P be a simple polygon with n vertices, HP(P) ≤ n − 2.

Proof By Lemma 3.12, it suffices to show that Partition(P) ≤ n − 2.

Prove this by induction. For n = 3, it holds trivially. Suppose that it
holds for n = k, and let us consider the case for n = k + 1.

By Two Ears Theorem, for any simple polygon P = (p0, p1, · · · , pk), there
exist i ∈ [k − 1], such that the triangle (pi−1, pi, pi+1) ⊆ P. Let Q =
(p0, p1, · · · , pi−1, pi+1, · · · , pk), which is the polygon given by cutting
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3. Hidden Points and Hidden Vertices

the ear (pi−1, pi, pi+1) from P. Notice that P = (p0, p1, · · · , pk) = Q ∪
(pi−1, pi, pi+1), and by induction, Partition(Q) ≤ k − 2. Thus we have
Partition(P) ≤ Partition(Q) + 1 ≤ k − 1 = n − 2. □

Lemma 3.11 Let P = (p0, p1, · · · , pn−1) be a simple polygon on n vertices,
then HV(P) ≤ ⌊n/2⌋.

Proof Prove this by contradiction. Suppose there exists a hidden vertex
set A ⊆ V(P) such that 2|A| > n. Construct the corresponding B as
follow,

B = {pi+1|pi ∈ A}.

Since |A|+ |B| = 2|A| > n ≥ |A ∪ B|, we have A ∩ B ̸= ∅. Then, there
exists i ∈ [0, n− 1] such that pi ∈ A and pi+1 ∈ A. Notice that pi and pi+1
are visible to each other, they could not be selected in A simultaneously,
leading to contradiction. □

Lemma 3.12 Let P be a simple polygon with r reflex vertices and n vertices in
total, then HP(P) ≤ Cover(P) ≤ Partition(P) ≤ r + 1.

Proof By Lemma 3.12, it suffices to show that Partition(P) ≤ r + 1.

Let Q = {q0, q1, · · · , qr−1} ⊆ V(P) be the reflex vertices of P. Start from
q0 to qr−1, for each reflex vertex qi, consider the ray

−→
qit which is the

bisector of the interior angle of vertex qi. Let w be the point on the ray
−→
qit where the ray intersect with other segments (including the segments
introduced previously) at the first time.

There are two cases to consider.

• A w is a vertex that already exists, then we connect qi to vertex w
with segment qiw.

• B w is a interior point of the edge (u, v), then we introduce a new
vertex w and split the edge into two edges (u, w) and (v, w), and
still we connect qi to the vertex w by qiw.

It is clear that such drawing is still a planar since no intersection is
incurred. Then we can claim that the faces of the above straight-line
planar drawing, except for the infinite face which includes the point at
infinity, are already a convex partition of P.

Denote the planar graph as G, first we argue that each finite face of G is
actually a convex polygon. Suppose the contradiction, there is a finite
face f such that there exist a vertex u ∈ V( f ) and v is a reflex vertex of f .
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3.2. In Simple Polygon

If v ∈ V(P), then there is an edge (u, v) such that (u, v) is the bisector of
the interior angle of vertex v in P, which splits it into 2 convex interior
angles, leading to a contraction.

If v /∈ V(P), this implies it is introduced during the above drawing. Then
before we introduce it into G, it is a interior point of some edge e and is
incident to at most two finite faces, where its interior angle is exactly π.
Therefore, v can not be a reflex vertex in any face f , a contraction.

Since all the finite faces do not overlap and cover the polygon P, we
conclude that it is a convex partition of P.

Let r1 and r2 denote the number of cases A and B respectively, and
let V, E, and F denote the number of vertices, edges and faces in the
planar drawing respectively. Thus, we have V = n + r2, E = n + r1 + 2r2.
By Euler’s Formula, we have V − E + F = 2, thus F = E − V + 2 =
r1 + r2 + 2 = r + 2. Notice that apart from exactly one infinite face, we
have r + 1 finite convex faces, thus HP(P) ≤ Partition(P) ≤ r + 1. □

Figure 3.1: This figure illustrates the proof of Lemma 3.12, where the dashed lines are the
introduced bisectors.

Apart from the size of maximum hidden point set, we are also interested
in the locations of them. Consider such a scenario, you are asked to put
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3. Hidden Points and Hidden Vertices

as many hidden points as possible in the following polygon, and at the
first glance, where would you put them at?

Figure 3.2: (A, B, C) is an optimal hidden points arrangement, the closed region filled by
grey color is Vis(A), the visible area from vertex A

It is likely that one may think that the convex vertex A is a good choice
for hidden points because it is in a more isolated position. In other
words, its visible areas Vis(A), the region where points in it are visible
from A, is ”narrower” than the visible areas of points other than A. In
the subsequent lemmas, we aim to formalize this intuition, providing
sufficient conditions for points to be included in the maximum hidden
point set.

Lemma 3.13 Let P be a simple polygon and H be an maximum hidden point
set. Let p ∈ P be a point and Vis(p) := {q|pq ⊆ P, q ∈ P} be the visible area
from point p. Then we have H ∩ Vis(p) ̸= ∅.

Proof Prove this by contradiction and suppose that H ∩ Vis(p) = ∅.
Then, H′ = H ∪ {p} is also a hidden point set as any point in H is
invisible to the point p. Further, we have |H′| > |H|, leading to a
contradiction against |H| = HP(P). □

Lemma 3.14 Let P be a simple polygon and p ∈ P be a point such that Vis(p)
is convex. Then, there exists a maximum hidden point set H such that p ∈ H.

Proof Let H′ be a maximum hidden point set in P. By Lemma 3.13,
there exists a point q ∈ H′, q ∈ Vis(p). Notice that for each r ∈ Vis(p),
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3.3. In Polygon with Holes

we have qr ⊆ P since Vis(p) is convex. Thus, Vis(p) ⊆ Vis(q) and
(H′ \ {q}) ∩ Vis(p) = ∅. Therefore, we have H = H′ \ {q} ∪ {p} is
another maximum hidden point set which includes point p. □

3.3 In Polygon with Holes

In the last section, we have seen that HP(P) ≤ r + 1, where r is the
number of reflex vertices. Consequently, generally speaking, more reflex
vertices help us host more hidden points in the polygon. Meanwhile, one
may think that more holes in the polygon can hide more points, as they
are natural ”obstacles” in the polygon to block the lines of vision. In this
section,we will explore the impact of the number of holes on the size of
maximum hidden point set.

Lemma 3.15 Let Q be a polygon with n vertices and h holes, then we have
HP(Q) ≤ n − h − 2.

Proof Let H = {} Notice that each polygon has at least 3 convex vertices,
then Q has at most n − 3 reflex vertices. Analogous to Lemma 3.12, by
introducing a bisector at each of them, we have a convex partition of
the plane with n − 1 convex polygons. Among them there are h holes,
and an infinite face, which do not belong to Q. Therefore, HP(Q) ≤
n − 1 − (h + 1) = n − h − 2. □

From this we could see that, arranging vertices with the configurations
with many holes, actually does not help with hiding more points, which
may be a counter-intuition point. The secret here is that the vertices of
the holes also are also counted in n. However, if we merely care about the
number of holes, we can see that it does increase the capacity of hidden
points in the following lemma.

Lemma 3.16 Let P be a polygon with h rectilinear holes, then HP(P) ≥ ⌊
√

h⌋.

Proof For 1 ≤ h ≤ 4, the cases are oblivious that HP(P) ≥ 2 because a
simple polygon with at least a hole in its interior can not be convex.

For h > 4, let m = ⌊
√

h⌋, and we will prove the lemma by giving an
explicit arrangements of at least m hidden points.

We try to figure out the location of the hidden points by the following
observation on rectilinear polygons.
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3. Hidden Points and Hidden Vertices

Fact 3.17 Let Hi be rectilinear polygon, then there exist three consecutive
vertices (ai, bi, ci) ∈ Hi in counterclockwise order such that

xa = xb < xc,
ya > yb = yc.

Figure 3.3: The marked vertices (ai, bi, ci) are vertices of our interests in each polygon.

We call the vertex bi the bottom-left corner of the rectilinear polygon Hi
with bi = (xi, yi), and we further assume that xi ≤ xi+1. We will find a
subsequence of the bottom-left corners such that they are y-monotone by
the following theorem.

Theorem 3.18 Erdős–Szekeres Theorem [22]: Given a sequence b with at
least (k − 1)(l − 1) + 1 real numbers, there exists at least one of the followings:

• a subsequence of indices I with size k such that bIi ≤ bIi+1 , ∀i ∈ [k − 1],

• a subsequence of indices I with size l such that bIi > bIi+1 , ∀i ∈ [l − 1].

Let k = l = m, we have (k − 1)(l − 1) + 1 = (m − 1)2 + 1 ≤ m2 ≤ h.
Therefore, by applying Theorem 3.18 on the sequence {bi = (xi, yi)|i ∈
[h]}, we can see that we have a subsequence I ⊆ [h] of length m such
that xIi ≤ xIi+1 and yIi is monotonely increasing or decreasing.

For any sequence λ, we rewrite λIi as λi if we are discussing about
the subsequence guaranteed by Theorem 3.18, to get rid of the double
subscripts.

Suppose the subsequence yi is monotonely increasing, in other words,
yi ≤ yi+1. Our goal is to place the hidden point ui on each polygonal
chain (ai, bi, ci). Consider each i ∈ [m − 1], if xi < xi+1, then let ui be the
midpoint of (ai, bi), and we can see that ∀j > i, the point uj on the the
polygonal chain (aj, bj, cj) is invisible to point ui since uiuj ∩ int(Hi) ̸= ∅.
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3.3. In Polygon with Holes

Otherwise, if xi = xi+1, we have yi < yi+1 as the holes are disjoint and
the corners can not overlap. Accordingly, we place the hidden point ui
on the midpoint of (bi, ci) and any point uj, j > i on (aj, bj, cj) is invisible
to ui. For the last hidden point um, let um = bm, thus completing the
construction.

Otherwise, suppose the subsequence yi is strictly monotonely decreasing,
implying yi > yi. In this case, for each i ∈ [m], we just let ui be the
midpoint of (bi, ci), composing a hidden point set.

Therefore, we can always place m = ⌊
√

h⌋ hidden points, which means
that HP(P) ≥ ⌊

√
h⌋. □

Indeed, we will see that the lower bound
√

h is asymptotically tight by
the following proposition.

Proposition 3.19 Let P be a polygon with h rectilinear holes, then there exist
P such that HP(P) ≤ 2(⌈

√
h⌉+ 1).

Proof We give the explicit arrangements of the rectilinear holes in P,
illustrated by the following figure. Let f (h) = minP HP(P), where P is
the polygon with h rectilinear holes. It is obvious that f (h) ≤ f (h + 1).
Thus, it suffices to prove the case where h = m2, m ∈ N+ is a perfect
square since for all (m − 1)2 < h′ < h, we have f (h′) ≤ f (h) and
⌈
√

h′⌉ = ⌈
√

h⌉.

Let Q be a convex polygon and m =
√

h. Let all the rectilinear holes be
squares of the same size and arrange them into a grid formation with
m rows and m columns. Denote the square at the i-th row and the j-th
column as si,j. For each 1 < i ≤ m, we make sure that the vertical edges
of si,j are collinear with the vertical edges of si−1,j. Similarly, for each
1 < j ≤ m, the horizontal edges of si,j should be collinear with those in
si,j−1 as well. Finally, let the desired polygon P be Q \ ⋃

i,j int(si,j). See
the following figure for detailed illustration.

It is clear that HP(P) ≤ Cover(P) ≤ 2(m + 1), because P can be covered
by 2(m + 1) horizontal and vertical corridors, which lies between and
beside the rows and columns, as is marked in the following figure 3.4.□

Actually, our investigation on this problem is not limited to this very
special case. Instead, we try to step into different scenarios, by either
restricting the type of holes or restricting the structure of polygons. In all
the cases we already figured out, the lower bound of the hidden points is
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3. Hidden Points and Hidden Vertices

Figure 3.4: Polygon with h = m2 holes. One horizontal corridor and another vertical corridor
are filled with grey.

at least Ω(
√

h). Therefore, it is reasonable to come up with the following
conjecture.

Conjecture 3.20 There exists constant c > 0, such that for any polygon P
with h holes, HP(P) ≥ c

√
h stands.
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Chapter 4

Set System of Visible Areas

Given a simple polygon P and a point u ∈ P, the task is to efficiently
find another point v in P such that u and v are invisible, or report such a
point v does not exist.

If this were an assignment in the Algorithm Lab, it is highly likely that a
student would propose a solution involving the enumeration of vertices
in P to find such a point v. This approach is indeed correct. However,
what is intriguing is that while v itself can be located anywhere in P,
we only consider the vertices as candidates for v. Thus, it becomes a
question why are these candidate vertices already sufficient for finding
v? Is there a scenario where all vertices of P are visible to u, but not
every point in P? These questions is concerning the characterization of
the visible area of u, which we will explore in this chapter.

Given a simple polygon P and a point u inside P, the visible area of u
with regard to P is the set of points which are visible to point u, which is
defined as the following.

Definition 4.1 Let P be a simple polygon and point u ∈ P, the visible area
from point u with regard to polygon P is defined as VisP(u) := {v| uv ⊆ P}.

In context of this thesis, if the polygon P is clear, we always omit the
subscript of the visible area and write it as Vis(u). Further, we always
assume that Vis(u) is regular simple polygon. That is its boundary is a
Jordan curve. This assumption is only for the simplicity of writing and
reading. The propositions we would argue about indeed stands for the
cases where the visible area is an irregular polygon, but the proofs of
them may involve additional notations.
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4. Set System of Visible Areas

Figure 4.1: In these figures, the grey areas represent the visible area of point u and point
v respectively. Notice that, Vis(u) is a regular simple polygon, but Vis(v) is not since the
segment ab also belongs to it.

In the last chapter, especially in Lemma 3.13 and Lemma 3.14, we could
see that the arrangement of the hidden points is closely related to the
property of the visible areas, and that is why we are interested in them.
In addition the connection between them, we are also willing to describe
the structure of the visible area itself, which this chapter is committed to.

By Definition 4.1, we could define the set system of the visible areas.

Definition 4.2 Let P be a simple polygon, the set system of its visible areas,
denoted as VS(P), is defined as VS(P) := (P, S), where S := {Vis(u)|u ∈ P}.

Actually, in the language of visible areas, the hidden point problem is
to locate these points in the polygon such that each of their visible areas
excludes any other point.

4.1 Steiner Points and Windows in Visible Areas

In this section, we are ready to propose basics facts about the visible area,
in particular, what are its vertices and edges composed of.

Proposition 4.3 Let P be a simple polygon, u be a point in P and Q = Vis(u),
then V(Q) ⊆ ∂P. That is, all the vertices of Q lie on the boundary of P.

Proof Prove this by contradiction. Suppose the opposite, there exists a
vertex v of Q such that v ∈ int(P).

First we claim that u ̸= v. Otherwise, suppose u = v, then there exists
ball B(u, ε), ε > 0 such that B(u, ε) ⊆ int(P). Hence, we have B(u, ε) ⊆ Q.
However, notice that u = v ∈ ∂Q, so for any ε > 0, we have B(u, ε) ̸⊆ Q,
thus leading to the contradiction.
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4.1. Steiner Points and Windows in Visible Areas

Then, let’s consider the two edges in Q which are incident to the vertex
v. At least one of them is not collinear with uv, otherwise v is no longer
a vertex of Q. Suppose that (v, w) is the edge of Q and points u, v, w are
not collinear. Let r be a relative interior point of vw. By the assumption
v ∈ int(P), we have r ∈ int(P).

Further, let s be the point where the ray −→ur intersect with ∂P or ∂Q at the
first time, apart from the point r. Let t be a relative interior point of rs,
then we have t ̸∈ Q, t ∈ int(P). However, because ut ⊆ P and point t is
visible to point u, t must be in Q, leading to the contradiction.

Therefore, for any vertex v of Q, v ∈ ∂P. □

Figure 4.2: This figure illustrates the proof of Proposition 4.3.

Let P be a simple polygon and Q be a fixed visible area in P. Proposition
4.3 shows that all the vertices of Q lie on the boundary of P. However,
not all of them are vertices of P, and some of them may lie in the relative
interior of edges in P. Also, some edges of Q are not arranged through
the boundary of P, as they might cross the interior of P.

Definition 4.4 Let P be a simple polygon, u be a point in P and Q = Vis(u),
a vertex v of Q is called a Steiner point if v ̸∈ V(P), and an edge e of Q is called
a window if e ̸⊆ ∂P.

Proposition 4.5 Let P be a simple polygon and Q be the visible area of a point
u in P. Let e = (v, w) be an edge of Q, then at least one of the following stands:

1. e ⊆ ∂P.

2. points u, v, w are collinear.

Proof Suppose the opposite, there exists an edge e = (v, w) of Q such
that e ̸⊆ ∂P and points u, v, w are not collinear.

Let r be the midpoint of edge e, since e ̸⊆ ∂P, we have r ∈ int(P).
Further, −→ur are not collinear with −→uv and −→uw. Let s be the point where
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4. Set System of Visible Areas

Figure 4.3: As is showed in this figure, point a, b and c are Steiner points introduced by
Vis(u) and the red segments are the windows of Vis(u).

−→ur intersect with ∂P or ∂Q at the first time, apart from the point r, let
t be the midpoint of the segment rs. Thus we have t ∈ P and t ̸∈ Q.
However, since ut ⊆ P, t should be visible to point u, which gives rise to
the contradiction. □

As is directly implied from the proposition 4.5, for each window of the
visible area, it must be collinear to the central point u.

Corollary 4.6 Let P be a simple polygon and Q = Vis(u). Let e = (v, w) be
a window of Q, then e is incident to at most one Steiner point.

Proof Suppose that e is incident to two Steiner points. Suppose that
v ∈ int(z1), w ∈ int(z2), where z1 and z2 are the edges of P.

Let l be the line passing e, by Proposition 4.5, we have u ∈ l. Notice that
l properly intersects with z1 and z2, so u ̸∈ l ⊆ e and u ∈ e.

If u = v, z1 is visible to u, and v is no longer a Steiner point, a contradic-
tion. Therefore, we have u ̸= v and u ̸= w.

If u ∈ int(e), u is indeed a interior point P, and there exists B(u, ε) ⊆
P, ε > 0, thus making B(u, ε) ⊆ Q. However, since u ∈ e ⊆ ∂Q, we
should have B(u, ε) ̸⊆ Q, leading to a contradiction. □

Proposition 4.7 Let P be a simple polygon and Q be the visible area of the
point u in P. Let e = (v, w) be the window of Q and v be the endpoint that is
closer to u. Thus we claim that v is a reflex vertex in both P and Q.
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4.1. Steiner Points and Windows in Visible Areas

Proof We already know that u, v, w are collinear. By the arguments in
Corollary 4.6, we know that u ̸∈ vw. We assume v is the endpoint which
is closer to point u, as is showed in the following figure.

Let r be the vertex succeeding the vertex w and v in Q. Notice that r can
not be collinear with e since v is a vertex in Q. Then we can see that v is
indeed a reflex vertex since ∠wvr = ∠wvu +∠uvr = π +∠uvr > π.

Hence, since v is a reflex vertex of Q, it must also be a reflex vertex of P,
as all the Steiner points are convex vertices. □

Accordingly, each window is incident to a reflex vertex in the original
polygon. Additionally, each Steiner point is also incident to a window,
otherwise it can not become a vertex of the visible area. Thus, we can
conclude the upper bound on the number of them.

Lemma 4.8 Let P be a simple polygon with r reflex vertices and Q be the visible
area of point u in P. Then Q has at most r Steiner points and at most r windows.

Proof It suffices to show that Q has at most r windows, as each Steiner
point must be incident to a window.

Let e = (v, w) be a window in Q and suppose v is the endpoint closer to
point u. By Proposition 4.7, we can see that v is a reflex vertex in P, and
we say that window u is associated to this vertex v (the closer vertex).

Further, we can see that each window is associated to a unique reflex
vertex. Otherwise, suppose that two windows e1 and e2 are associated to
the same reflex vertex u. However, by Proposition 4.5, u is collinear to
both e1 and e2. This is actually impossible because e1 and e2 can not be
collinear, otherwise u is no longer a vertex of the visible area.

Therefore, there are at most r windows in Q, and thus at most r Steiner
points. □
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4. Set System of Visible Areas

Lemma 4.9 Let P be a simple polygon with n vertices and Q be the visible area
of point u in P. Then Q has at most n vertices.

Proof Suppose there are s Steiner points in Q, and let X = V(P)∪ V(Q),
then |X| = n + s. Let X = (p0, p1, · · · , pn+s−1) be the cycle composed of
these vertices in the counter-clockwise order.

Suppose p0 ∈ V(Q) and consider the following scenario. We start with
p0 and visit all the vertices of Q among X in counter-clockwise order,
and eventually back to p0, giving us a subset of X. Let e = (v, w) be a
window of Q, and thus they are not adjacent in X. Given that we need
to visit w immediately after v, we must bypass some vertices between
them in X. When walking through these s windows, we have to make s
”leaps”, which excludes at least s vertices.

Therefore, |V(P) \ V(Q)| ≥ r, |V(Q)| ≤ n + s − s = n.

Lemma 4.10 Let P be a simple polygon on n vertices, and u be a point in P.
Then, VisP(u) can be computed in O(n) time.

Proof This is proved jointly by [31] and [13]. □

In summary, this section discusses about the basic facts about the single
visible area, which paves our way to the set system of the visible areas.

Remark 4.11 All the above statements stands even if the visible areas are not
regular simple polygons, but in our proofs we assume they are, merely for brevity.

4.2 VC-dimension of Visible Area Set System

In terms of a set system, what naturally draws our attention is the
Vapnik–Chervonenkis (VC) dimension, which evaluates the complexity
and flexibility of a set system. In this section, given a simple polygon
P with r reflex vertices, we prove that its set system of visible areas has
VC-dimension at most O(log r).

Definition 4.12 Let U be a set and S be a family of subsets of U. Let X be a
subset of U. X is said to be shattered by S if and only if for any Y ⊆ X, there
exist C ∈ S such that C ∩ X = Y.

In our context, U is also called the ground set and the pair (U, S) is the
set system.
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4.2. VC-dimension of Visible Area Set System

Definition 4.13 Let X be the ground set and Λ = (X, S) be a set system over
X. The VC-dimension of Λ, denoted as dim(Λ), is defined by:

dim(Λ) =


−1 if S = ∅,
k if k is the size of the largest sets in F,
+∞ if there exists arbitrary large set in F,

where F is the collection of the subsets of X which can be shattered by S.

Let P be the simple polygon, which is the ground set, and Λ = VS(P)
be the set system of visible areas in P. The VC-dimension of Λ is the
maximum number of points that we can arrange in P such that for any
subset of them, we can locate an observer in P which is visible to this
subset but invisible to its complement. In the following paragraphs, we
will show that actually we can not arrange too many such points.

Lemma 4.14 Let P be a simple polygon with r reflex vertices and Λ =
VS(P) = (P, S), then we have dim(Λ) ≤ 10 log r.

Proof If dim(Λ) = 0, the lemma stands certainly. If r = 0, we have P
is convex and S = {P}. Accordingly, dim(Λ) = 0 and the case is also
trivial. Thus, we assume that both dim(Λ) and r are positive.

Let X = {u1, u1, · · · , uk} ⊆ P be the set of k points can be shattered by S.
Further, for each point ui, let Qi = Vis(ui) denote its visible area. Draw
the polygon P and each Qi, i ∈ [k] on the plane, and denote this plane
graph as G. The vertices of G are composed of two parts: One is from the
original polygon P and visible areas Qi, and another is the points where
edges of the visible areas properly intersect. Accordingly, the edges of G
are subdivisions of the original edges in P and Qi.

Let v, e and f denote the number of vertices, edges and faces of this
planar drawing. Notice that X can be shattered by S. Let Y be each
subset of X, and we can find a point in P such that it is visible to Y and
invisible to X \ Y, thus giving us in total 2k points. Further, any two of
them must reside in different faces, as the point in the same face are
also visible to the same part of X. Take the infinite face into account, we
should have the lower bound of f , f ≥ 2k + 1.

By the Euler’s formula v − e + f = 2, we have f = 2 + e − v. Further, let
s denote the number of Steiner points in all the visible area of ui. Thus,
we have v ≥ n + s, which is bounded by number of vertices on ∂P.

Meanwhile, let’s derive the upper bound of e. The edges of G are
composed of two parts: One lies on ∂P, which has in total n + s edges,
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4. Set System of Visible Areas

and another cross the interior of P, which originates from the windows
of Qi. Notice that for each visible area Qi, it has at most r windows,
thus we have at most kr windows in total. For each window in Qi, it
can only properly intersect with the windows from the other visible area
Qj, j ̸= i. Therefore, each window can contribute (k − 1)r + 1 ≤ kr edges.
Aggregate them together, we have e ≤ n + s + k2r2.

Then, we have the upper bound of f , which is f ≤ 2 + k2r2. Combine
it with the lower bound, we have 2k + 1 ≤ 2 + k2r2, implying that
k ≤ 10 log r.

Therefore, we can conclude that Λ has VC-dimension at most 10 log r.□

It is not satisfying that the set system of visible areas has VC-dimension
bounded by the logarithm of number of reflex vertices. Further, it is also
conjectured to be upper bounded by some constant, which is formulated
in the next conjecture.

Conjecture 4.15 There exists constant C > 0, such that for any simple polygon
P, let Λ be its set system of visible areas, we have dim(Λ) < C.
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Chapter 5

Hardness of Hidden Points

Linear programming is one of the most famous mathematical optimiza-
tion problems. Despite dealing with continuous real space, it is well-
known that an optimal solution can always be found among the vertices
of the polytope, which can be formulated as a discrete combinatorial
structure. Further, it can be showed that it always has a polynomial size
optimal solution, thus making itself contained in NP. However, not all
mathematical optimization problems enjoy the same fortune. The cele-
brated art gallery problem, for instance, has been proved that sometimes
irrational coordinates are necessary [4].

When it comes to the maximum hidden points problem, a similar ques-
tion persists, and we will step into it further in this chapter.

5.1 NP Optimization Compendium

When we talk about the hardness of a problem, we usually refer to the
hardness of a decision problem. Given a language L and an instance
x, we care about if we can decide x ∈ L or x /∈ L in polynomial time
with a deterministic/non-deterministic Turing machine. However, in
the following contexts, we will use a completely different complexity
compendium. That is the hardness of the optimization problems, which
was originally proposed in [16].

Definition 5.1 NP Optimization problem: An NP optimization problem
A (in abbreviation NPO problem) is defined as a fourtuple (I, sol, m, goal),
in which
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5. Hardness of Hidden Points

• I is the set of instances of A and it is recognizable in polynomial time

• Let x be an instance of I, sol(x) is the set of feasible solution of x, and
there exists a polynomial p such that ∀x ∈ I, y ∈ sol(x), we have
|y| ≤ p(|x|). Further, ∀x, y with |y| ≤ p(|x|), whether y ∈ sol(x)
or not can be decided in polynomial time.

• Let x ∈ I and y ∈ sol(x), m(x, y) denotes the positive integer
which is the measure evaluating the quality the solution. Further,
∀x ∈ I, y ∈ sol(x), m(x, y) can be computed in polynomial time.

• goal ∈ {max, min}, which describe our primary objective is to either
maximize or minimize the measure m.

The goal of A with respect to the given instance x ∈ I is to find an optimal
solution y∗ such that

m(x, y∗) = goal{m(x, y)|y ∈ sol(x)}.

Accordingly, the optimal value opt(x) is defined as opt(x) := m(x, y∗).

Generally speaking, the main difference between NP Optimization prob-
lem and general mathematical optimization is that NP Optimization only
recognize polynomial large solutions. Given an instance x and a solution
y, we can decide whether x is a valid instance, whether y is a feasible
solution, and further evaluate the performance of y in polynomial time.

Let us make the maximum hidden vertex problem as an example.

Let A = (I, sol, m, gol) be a NPO problem for the hidden vertex set
problem, where

• I is the set of simple polygons. For any instance x ∈ I,
x is represented by the coordinates of the n vertices, x =
(p0, p2, · · · , pn−1). We can see that we can verify whether they
compose a simple polygon or not in O(n2m2), where m is the
largest number of bits pi has. Notice that |x| = Ω(max{n, w}),
and thus I is recognizable in polynomial time.

• sol is the collection of the hidden vertex sets. Given the instance
x with n vertices, a solution y is 0/1-bit string of length n
such that for all 0 ≤ i < n, the vertex pi is included in the
corresponding set Y if and only if yi = 1. Hence, we can verify
y ∈ sol(x) by checking whether Y is indeed a hidden vertex set
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in polynomial time by computing the visibility graph of x.

• Given the instance x and a feasible solution y, m(x, y) is the
metric which counts the number of 1s in y, which is essentially
the size of Y. Therefore, m can be computed in linear time O(n)
and hence upper bounded by n.

• goal = max since our primary objective is to maximize the size
of hidden vertex set.

Therefore, we can safely conclude that the maximum hidden vertex
problem is an NP optimization problem.

5.2 Optimal Solution of Hidden Points

5.2.1 Irrational Points are not Necessary.

When it comes to the hidden points, the case becomes much more difficult
than hidden vertices. The key point is that, the feasible arrangement
of hidden points in a given polygon (i.e. the coordinates of the hidden
points), is not guaranteed to have polynomial size, given that the numeral
system to represent the coordinates is fixed.

In this section, we can see that there is always an optimal solution for the
hidden point set, whose coordinates are all rational.

At the very beginning, we need to address the first concern: is it possible
that there exist an instance in which the optimal solution for maximum
hidden point set is unique? In fact, we prove that such optimal solution
is always not unique.

Lemma 5.2 Let P be a simple polygon, then the maximum hidden point set in
P is not unique.

Proof Let P be a simple polygon and A = (a1, a2, · · · , ak) be the maxi-
mum hidden point set in P. Let Qi = Vis(ai), which is a closed set, and
thus Qi is a open set. Given fixed {a2, a3, · · · , ak}, for each i ∈ [2, k], since
a1 ∈ Qi, there exists εi > 0, such that B(ai, εi) ⊆ Qi.

Let σ = min{εi}k
i=2, then ∀i ∈ [2, k], B(a1, σ) ∩ Qi = ∅. Since {a1} ⊊

B(a1, σ) ∩ P, there exists a′1 ̸= a1, such that a′1 ∈ B(u, σ) ∩ P. There-
fore, {a′1, a2, · · · , ak} is another maximum hidden point set other than A,
indicating that the maximum hidden point set is not unique. □
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5. Hardness of Hidden Points

Take one step further, we can show that there always exists a rational
optimal solution.

Proposition 5.3 Let P be a simple polygon and Q be a simple polygon such
that V(Q) ⊆ ∂P and Q ⊆ P, P \ Q ̸= ∅, then we have int(P \ Q) ̸= ∅.

Proof Notice that V(Q) ⊆ ∂P and Q ⊊ P, then Q has at least an edge e
such that e ⊆ ∂P. Otherwise, we have Q = P, contradicting to P \ Q ̸= ∅.
Let e = (u, v) be such an edge of Q and P(u, v) be the polygonal chain
alongside ∂P connecting u and v, which does not includes any other
vertices from Q. Then we can see that e and P(u, v) constitute a Jordan
curve, encircling a simple polygon R. Hence, int(R) ̸= ∅ and int(R) ⊆
int(P \ Q). Therefore, int(P \ Q) ̸= ∅. □

Corollary 5.4 Let P be a simple polygon and u be a point inside P such that
P ̸= Vis(u), then int(P \ Vis(u)) ̸= ∅.

Proof This is implied by V(Vis(u)) ⊆ ∂P in Proposition 4.3 and Proposi-
tion 5.3. □

Lemma 5.5 Let P be a simple polygon, then there exists an maximum hidden
point set B = (b1, b2, · · · , bk) such that ∀i ∈ [k], bi = (xi, yi) and both xi and
yi are rational numbers.

Proof Let A = (a1, a2, · · · , ak) be a maximum hidden point set in P, we
will find a hidden point set such that it has the same cardinality as A
and all of its coordinates are rational.

If ∀i ∈ [k], ai = (xi, yi) is composed of rational coordinate, we already
have it. Otherwise, suppose that a1 = (x1, y1) include irrational coordi-
nates. Consider the feasible region of the hidden point a1, a1 ∈ P \ Q,
where Q =

⋃k
i=2 Vis(ai). By Corollary 5.4, we have int(P \ Q) ̸= ∅.

Let the point u ∈ int(P \ Q), and then there exists constant ε > 0 such
that the l1-ball B1(u, ε) ⊆ P \ Q. Let m1 be the smallest integer such that
ε ≥ 1

m1
. Notice that B1(u, ε) is a axis-aligned square with length 2ε ≥ 2

m1
,

then there exist a point rational point v = (X1/m1, Y1/m1) and v ∈
B1(u, ε) such that X and Y are integers. Consequently, A′ = v, a2, · · · , ak
forms another maximum hidden point set, with v being a rational point.

Thus, for each i ∈ [k], by fixing the other hidden points, we can relocate
hidden point ai to a rational feasible point, thereby constructing the
desired solution. □
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In summary, the preceding paragraphs establish the feasibility of rep-
resenting the hidden point set using a finite number of bits, which we
confirm to be achievable.

5.2.2 Is the Hidden Point Problem in NPO?

This subsection is dedicated to discussing whether the hidden point
problem is in the complexity class of NPO, which means an optimal
solution of polynomial size can always be found. As of now, this conjec-
ture remains undetermined, but we may present arguments that might
suggest its validity.

Before we start, let us formally define the “size” of the number, which
we already informally used in last subsection.

Definition 5.6 Let n be an integer, the size of n is defined as the least positive
integer l such that −2l−1 ≤ n ≤ 2l−1 − 1, denoted as size(n).

Definition 5.7 Let r = p/q be a rational number, where p is an integer, q is a
positive integer, and p, q are coprime (such pair of p and q is unique). Then, the
size of r is defined by size(r) := size(p) + size(q).

If the rational number r is of size l, we say that r has l bits. Besides, any
irrational number is considered to have infinite large bits. Accordingly,
we could further refine the arguments in last subsection.

Proposition 5.8 Let x and y be two rational numbers with n and m bits
respectively, and then x + y, x − y, x ∗ y and x/y have at most 2(n + m) bits.

Definition 5.9 Let A = (x, y) be a point in the plane, A is called an integral
point if both x and y are integers. Let P be a simple polygon, P is called an
integral polygon if all of its vertices are integral points.

Lemma 5.10 Let P be an integral polygon and the coordinates of its vertices
have at most m bits, then there exists a point r ∈ int(P) such that coordinates
of r have at most m + 5 bits.

Proof Let Q be the smallest (in terms of area) integral triangle inside P.
Notice that P must contain some integral triangle as the triangulation of
P is composed by integral triangles. Since P only includes finite number
of integral triangles, such Q always exists. It suffices to show that we can
find a point r ∈ int(Q) such that r has at most m + 5 points.
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Further, we know that Q does not include any integral points other than
its vertices. Otherwise, we could find a integral triangle inside Q which
is strictly smaller.

By Pick’s theorem [38], the area A of an integral polygon P is: A =
i + b/2 − 1, where i is the number of integral points in int(A) and b is
the number of integral points in ∂P. Consider the triangle Q, we have
iQ = 0, bQ = 3 and AQ = 1

2 .

Hence, consider the following affine transformation in the plane:

f : (x, y) → (3x, 3y),

which actually scales up the coordinates by three times. Suppose R is
the image of Q under the mapping f . It is clear that R is also an integral
triangle and AR = 9AQ = 9

2 .

Further, for each edge of R, it has only two integral points in its relative
interior, which are the trisection points of it. Thus, bR = 9. Since
AR = iR + bR/2 − 1, we have iR = 1. This implies that there exists a
integral point u ∈ int(R). Let r = f−1(u), and we have r ∈ int(Q).

Let u = (xu, yu) and r = (xr, yr). Since the coordinates of the vertices of Q
have at most m bits, we have |xr| ≤ 2m−1, thus |xu| = 3|xr| < 2m+1, then
size(xu) ≤ m + 2 bits. Hence, xr = xu

3 , size(xr) = size(xu) + size(3) ≤
m + 2 + 3 = m + 5. Therefore, xr has at most m + 5 bits, and so does yr.

In summary, we can find a point r in the interior of P such that the
coordinates of r has at most m + 5 bits. □

Corollary 5.11 Let P be a simple polygon such that the coordinates of its
vertices have at most m bits (do not necessarily to be integers). Then we can
find a point u ∈ int(R) such that the coordinates of r have O(m) bits.

Proof We suppose that P is a triangle. If not, let T be a triangulation of
P and continue our argument on any triangle in T .

Let P = (p0, p1, p2), and pi = (ai/bi, ci/di).

Consider the following affine transformation in the plane:

f : (x, y) → (b0b1b2x, d0d1d2y).

Let Q be the image of P under the mapping f . It is clear that Q is indeed
an integral triangle and the coordinates of its vertices have O(m) bits. By
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Lemma 5.10, there exists a interior point u ∈ Q such that coordinates of
u have O(m) bits.

Let u = (xu, yu) and r = f−1(r). Thus we have r = ( xu
b0b1b2

, yu
d0d1d2

) and
r ∈ int(P). Since xu and yu both have O(m) bits, we can conclude that
coordinates of r also have O(m) bits. □

Lemma 5.12 Let P = (p0, p1, · · · , pn−1) be a simple polygon and A =
(a1, a2. · · · , ak) be an arrangement of hidden points such that:

• the coordinates of vertices in P and hidden points in A have at most m
bits.

• P \ (⋃k
i=1 Vis(ai)) ̸= ∅.

Then, we can find another point ak+1 ∈ P such that A ∪ {ak+1} is still hidden
point set, and the coordinates of ak+1 have at most O(m) bits.

Proof Let Qi denote Vis(ai) and R = P \ (⋃k
i=1 Qi). Note that R has

finite number of connected components, since by Lemma 4.9, each visible
area has at most n edges, and thus leading to finite number of faces. Let
C be the closure of any connected component of R.

Let’s consider the boundary of C. For any edge e of C, exact one of the
following statement stands:

• e is part of the boundary of P,

• e is part of the window of some Qi.

Let l be the straight line passing through the edge e. If e ⊆ ∂P, l must
pass through two consecutive vertices pj and pj+1 in P. If e is part of
the window of the visible area Qi, by Proposition 4.5, l must pass by the
hidden point ai and a reflex vertex u of P. Therefore, let X = V(P)

⋃
A,

we can conclude that l must pass through two distinct points in X.

Further, consider any vertex w = (xw, yw) of the polygon C, it should be
the intersection point of lines l1 and l2. By arguments before, we know
that both l1 and l2 pass through at least two distinct points in X. Let
u = (xu, yu) and v = (xv, yv) be the two points l1 passing by in X. Then,
the equation of l1 can be formulated by:

l1 : (x − xu)(yv − yu)− (y − yu)(xv − xu) = 0.
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Similarly, let s = (xs, ys) and t = (xt, yt) the points l2 passing by in X.
Thus, the coordinates of w is the solution of the following linear system:

l1 : (x − xu)(yv − yu)− (y − yu)(xv − xu) = 0,
l2 : (x − xs)(yt − ys)− (y − ys)(xt − xs) = 0.

Since the coordinates of point u, v, s, and t have at most m bits, by Propo-
sition 5.8, both xw and yw have O(m) bits. Therefore, the coordinates of
the vertices of C have at most O(m) bits. By Corollary 5.11, we can find
a point r ∈ int(C) such that r also has O(m) bits.

Notice that r ∈ int(C) and int(C) ⊆ R, we have r ∈ P \ (⋃k
i=1 Vis(ai)).

Therefore, ak+1 = r can be the additional hidden point, the coordinates
of which only have O(m) bits. □

The above proposition shows that given the chance to place another
hidden point, it is possible to locate it at some coordinate which only
need number of bits that is “proportional” to other vertices and hidden
points. But, this is not sufficient to guarantee us that the hidden point
problem is in NPO, as such argument might lead to exponentially large
solution in total.

5.3 Approximation for NP Optimization

Apart from the hardness of exactly solving the NP optimization problem,
we are also interested in find a solution with relatively good performance,
that is where the definitions of performance ratio and approximation
algorithm come in.

Definition 5.13 Let A be an NPO problem. Given an instance x ∈ I and
y ∈ sol(x), R(x, y) denotes the performance ratio of y with regard to x, which
is defined as:

R(x, y) = max{m(x, y)
opt(x)

,
opt(x)
m(x, y)

}.

Definition 5.14 Let A = (I, sol, m, goal) be an NPO problem, and T be an
algorithm, then T is an approximation algorithm of problem A if ∀x ∈ I, we
have T(x) ∈ sol(x).

Further, we can define the approximability of an NPO problem.

Definition 5.15 Let A be an NPO optimization problem, and r be a function,
and r : N → (1,+∞). Then, A is called r(n)-approximable if and only if there
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exists a polynomial approximation algorithm T of problem A such that

∀x ∈ I, R(x, T(x)) ≤ r(|x|).

Accordingly, such T is called an r(n)-approximation algorithm for problem A.

According to the approximability, we can define the following subclasses
of NPO.

Definition 5.16 Let A be an NPO problem, then A belongs to the class APX
if there exists some constant c > 1 such that A is c-approximable.

Definition 5.17 Let A be an NPO problem, then A belongs to the class nε-APX
if there exists some constant ε > 0 such that A is nε-approximable.

Definition 5.18 Let A be an NPO problem, then A belongs to the class log(n)-
APX if there exists some constant c > 0 such that A is c log(n)-approximable.

We can see that as the asymptotic bound of r(n) increases, the scope of the
class r(n)-APX also becomes larger, and it is more likely to contain harder
NP optimization problems. The following figure 5.1 is an illustration of
this hardness hierarchy. We remark that P in the diagram denote the set
of NPO problems that can be solved in polynomial time.

Notice that this leveled structure stands given that we assume P ̸= NP.
Otherwise, P = NPO is immediately implied1 and this hardness hierarchy
will collapse accordingly.

Among all the NP optimization problems, we are ready to define the
completeness via the idea of the PTAS reduction. In one sentence, PTAS-
reduction is a kind of reduction such that the performance ratio is
preserved through the bijection of an invertible function h.

Definition 5.19 [16] Let A = (IA, solA, mA, goalA) and B = (IB, solB, mB, goalB)
be two NPO problems, then A is PTAS reducible to B if and only if there exists
three function f , g, h such that:

• f : IA × Q ∩ (1,+∞) → IB.

• For any x ∈ IA and any rational ε ∈ (1,+∞), we have f (x, ε)IB, and it
can be computed in polynomial time with regard to |x|.

1To see this, we can do binary search on the output of objective function m. The
corresponding decision problem is in NP, and by assumption can be solved in polyno-
mial time. Note that m is computable in polynomial time, so it take at most polynomial
times binary search.
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Figure 5.1: The diagram for classes of NPO.

• g : IA × IB × Q ∩ (1,+∞) → IA, for any x ∈ IA, any rational ε ∈
(1,+∞), and any y ∈ solB( f (x, ε)), we have g(x, y, ε) ∈ solA(x) and g
can be computed in polynomial time with regard to both |x| and |y|.

• h : (1,+∞) → (1,+∞) is computable and invertible.

• For any x ∈ IA, any rational ε ∈ (1,+∞), and any y ∈ solB( f (x, ε)), if
RB( f (x, ε), y) ≤ h(ε), then we have RA(x, g(x, y, ε)) ≤ ε.

Definition 5.20 [16] Let A be an NPO problem, if for any other NPO problem
B, B is PTAS-reducible to A, then A is said to be APX-hard. Further, if A ∈
APX and A ∈ APX-hard, A is said to be APX-Complete.

Towards the approximability of hidden points and hidden vertices, the
following arguments are already established in [19].

Theorem 5.21 [19] Let A be the problem of maximum hidden vertex set in a
simple polygon, then A ∈ APX-hard.

In the following chapters, we will see that it is indeed APX-Complete by
finding a polynomial algorithm approximating it within a constant of 4.

Theorem 5.22 [19] Let A be the problem of maximum hidden point set in a
simple polygon, then there exists rational c > 1 such that A is not approximable
within c as long as we assume P ̸= NP.

Originally, in [19], it is reported to be APX-hard because they have
different definitions. In our contexts, we can not have such statement as
it is even not guaranteed to be an NPO problem.
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5.4 Existential Theory of the Reals

In this section, we make a brief introduction to the existential theory
of the reals hardness class ∃R and the semi-algebraic sets. This is a
completely different scope other than the NP optimization compendium.
Moreover, we prove that the decision version of the hidden point problem
is in ∃R.

First of all, we propose the decision problem of hidden point problem.

Definition 5.23 We define the following language L such that for any polygon
P and positive integer k, the tuple (P, k) is in L if and only if there exists an
arrangement of k hidden points in polygon P.

Given a polygon P and a positive integer k, the decision question of the hidden
point problem, asks whether (P, k) ∈ L or not.

It becomes oblivious that the hardness of the hidden point problem itself,
denoted as S, is closely related to this decision problem, denoted as
T. If T can be solved in polynomial time, so does S, as we can binary
search the largest positive integer k such that the solution to T is positive.
Similarly, if T is in NP, we know that S belongs to NPO. In another way,
if we could solve S, we could also solve T easily since we already know
the largest possible k.

By far, we still cannot conclude the hardness of T precisely. However, in
this section, we will establish that T can be formulated as the feasibility
of semi-algebraic sets, thereby placing it within the complexity class ∃R.

5.4.1 Semi-algebraic Sets and ∃R

The most fundamental object that algebraic geometry focuses on is the
algebraic sets. In our contexts, we are dealing with semi-algebraic sets,
which is induced by algebraic sets, via boolean combination of equalities
and inequalities of real polynomials.

Definition 5.24 Let I be a subset of the real vector space Rn. I is called an
algebraic set (algebraic variety) if there exists real polynomials f1, f2, · · · , fk
such that

I = {x ∈ Rn| f1(x) = f2(x) = · · · = fk(x) = 0}.

I is a basic semi-algebraic set if there exists real polynomials f1, f2, · · · , fk and
h1, h2, · · · , hm such that

I = {x ∈ Rn| fi(x) ≥ 0, ∀i ∈ [k]; hi(x) > 0, ∀i ∈ [m]}.
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5. Hardness of Hidden Points

I is a semi-algebraic set if it is the union of finite number of basic algebraic sets.

Further, we can consider the relationship between the class of semi-
algebraic sets and formulas, and then define the existential theory of the
reals.

Definition 5.25 A quantifier-free formula on Rn is generated by following
rules:

• Let P : Rn → R be a real polynomial, then P ∗ 0 is a formula, where
∗ ∈ {<,=,>}.

• If φ and ψ are both formulas, then their conjunction φ ∧ ψ, their disjunc-
tion φ ∧ ψ, and the negation ¬φ are also formulas.

Definition 5.26 Let φ be a quantifier-free formula on n real variables x1, · · · , xn,
and ψ = ∃x1∃x2 · · · ∃xn φ. ψ belongs to the existential theory of the reals if it
is true, and φ is said to be satisfiable in this case.

We denote the set of all quantifier-free formulas as QFF. Via the scope of
QFF, we can further define the complexity class ∃R.

Definition 5.27 Let A be a decision problems and I be the set of its instances.
A is in ∃R if there exists a mapping f : I → QFF, which is computable in
polynomial time, such that for any instance z ∈ I, z is a yes instance if and only
if the formula f (z) is satisfiable.

From the above definitions, one can see that for any semi-algebraic set S,
there exists a quantifier-free formula φ such that S = {x|φ(x)}, as we can
translate the intersection and union of the sets into the conjunction and
disjunction of the formulas. Therefore, let P be the problem to decide
whether a semi-algebraic set is empty or not, we can safely conclude that
P is in the complexity class ∃R.

Though a lot of efforts has been spent to formulate different problems in
∃R, we still can not capture ∃R precisely in classical complexity classes.
Up to now, there have been two milestones in attempting to locate ∃R in
classical complexity hierarchy: [44] showed that it is NP-hard, and [12]
proved that itself is contained in PSPACE. Since PSPACE ⊆ EXPTIME,
we have that problems in ∃R can be solved in exponential time. This
is indeed non-trivial, as the best one prior to it is a double-exponential
algorithm in [15].
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5.4. Existential Theory of the Reals

5.4.2 Hidden Point Problem is in ∃R

In this subsection, we will formulate the decision problem of hidden
points as semi-algebraic sets, thus proving the following theorem.

Theorem 5.28 Let P be the decision problem of hidden points, then P ∈ ∃R.

Proof Let (P, m) be an instance of P , where P = (p0, p1, · · · , pn−1) be a
simple polygon and m is a positive integer. Let wi,j be the line passing
vertex pi and pj and W =

⋃
i ̸=j wi+j. Let hi = (xi, yi) be the i-th hidden

point. We will construct a quantifier-formula φ over the coordinates
(xi, yi), i ∈ [m], such that P admit an arrangement of m hidden points if
and only if φ is satisfiable.

Let T = (T1, T2, · · · , Tn−2) be a triangulation of P. If P admits m hidden
points in it, by Corollary 5.4, we know that the feasible area of each point
has non-empty interior, implying that it has positive Lebesgue measure.
Therefore, each hidden point can be rearranged to another point in P \W,
as W only has zero Lebesgue measure. Therefore, we can always assume
that ∀i ∈ [m], hi ∈ P \ W, and it would never hurt the feasibility.

By definition, the formula φ can be decomposed as the following con-
junction of sentences:

φ = ∧m
i=1[hi ∈ P \ W] ∧i ̸=j [hihj ̸⊆ P],

Let li be the sentence [hi ∈ P \W] and oi,j be the sentence [hihj ̸⊆ P]. Since
hi ∈ P \ W, there exists exact one triangle Tj ∈ T such that hi ∈ int(Tj).
Thus,

li = [∨n−2
j=1 [hi ∈ int(Tj)]] ∧ [hi ̸∈ W].

Let si,j be the sentence hi ∈ int(Tj), and denote Tj = (aj, bj, cj). For any
two distinct points u and v, let H+

u,v be the open halfplane which is on
the left hand side of −→uv. Then, si,j can be further displayed.

si,j = [hi ∈ H+
aj,bj

] ∧ [hi ∈ H+
bj,cj

] ∧ [hi ∈ H+
cj,aj

].

Let ri be the sentence [hi ̸∈ W], then si can be further decomposed as

ri = ∧j ̸=k[hi ̸∈ wj,k].

Denote the sentence [hi ̸∈ wj,k] as zi,j,k, then zi,j,k can be written as

zi,j,k = [hi ∈ H+
pj,pk

] ∨ [hi ∈ H+
pk,pj

]
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5. Hardness of Hidden Points

Meanwhile, let’s consider the sentence oi,j. Since both hi and hj are in
the interior of P, there exists an edge ek = (pk, pk+1) of P such that ek
intersects with the segment hihj properly. Therefore,

oi,j = ∨n−1
k=0 [hihj properly intersects with pk pk+1].

Suppose that for some specific k, hihj properly intersects with the edge
pk pk+1, and let ti,j,k denote this sentence. Thus, these four points hi, hj, pk,
and pk+1 are in convex positions. Let C = conv({hi, hj, pk, pk+1}) be their
convex hull. Consider the order of vertices in C, there are two different
cases: either C = (hi, pk, hj, pk+1) or C = (hi, pk+1, hj, pk). Accordingly,

ti,j,k = [C = (hi, pk, hj, pk+1)] ∨ [C = (hi, pk+1, hj, pk)].

Take [C = (hi, pk, hj, pk+1)] as an example, it can be formulated as the
conjunction of 4 sentences.

[C = (hi, pk, hj, pk+1)] = [hi ∈ H+
pk,pk+1

] ∧ [hj ∈ H+
pk+1,pk

]

∧ [pk ∈ H+
hj,hi

] ∧ [pk+1 ∈ H+
hi,hj

].

Let u = (xu, yu), v = (xv, yv), w = (xw, yw) be three points and u ̸= v. As
the final piece of the proof, we need to translate the formula with the
form w ∈ H+

u,v into semi-algebraic sets. Indeed,

[w ∈ H+
u,v] = [(xw − xu)(yv − yu)− (yw − yu)(xv − xu) < 0],

which only involves square-free quadratic polynomials.

Put all the pieces above together, we show that for each instance (P, m),
we can construct a formula φ such that P admits m hidden points if and
only if φ is satisfiable. Therefore, the decision problem of hidden points
is in ∃R. □
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Chapter 6

Spiral Polygon

We start our investigation on a series of polygon classes from the spiral
polygon. It has the almost simplest structure, both in geometry and
graph theory, such that it grants us the possibility to resolve the hard
problems efficiently. Most importantly, it helps us to deduce some most
basic and fundamental ideas in our contexts, including the convex/reflex
chains and the continuous visibility graph.

Definition 6.1 Let P = (p0, p1, · · · , pn−1) be a simple polygon and p0 is a
convex vertex. P is called a spiral polygon if there exists 0 < l ≤ r < n such
that pi is a reflex vertex if and only if l ≤ i < r.

Indeed, a spiral polygon is a polygon whose boundary is composed of
two intervals whose vertices are all convex and reflex, respectively.

Figure 6.1: Figures of spiral polygons. The left one has only three convex vertices, which is
the minimum for any simple polygon.
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6. Spiral Polygon

6.1 Convex Chain and Reflex Chain

In this section, we try to establish the geometric connections between
the vertices of polygon, and further their relations to the maximum
independent set and maximum clique, via the idea of the convex chain
and the reflex chain.

Definition 6.2 Let P = (p0, p1, · · · , pn−1) and L = (l0, l1, · · · , lk−1), k ≥ 3,
be a polygonal chain of the vertices of P in counter-clockwise order such that
∀i ∈ [0, k − 2], we have lili+1 ⊆ P.

L is called a convex chain of P if for any i ∈ [k − 2], vertex li+1 lies on the left
hand side of

−−→
li−1li.

Respectively, L is called a reflex chain of P if for any i ∈ [k − 2], vertex li+1 lies
on the right hand side of

−−→
li−1li. 1

The vertices are in the counter-clockwise order means that we can start at
l0, walk through ∂P, and visit the vertices of L in order without visiting
any vertex twice. Meanwhile , traverse through a convex/reflex chain
takes a left/right turn on each intermediate vertex. See the following
figure for illustration.

Before we propose further arguments about the convex and reflex chains,
we present the following topology fact without a proof, based on which
we continue our discussion.

Lemma 6.3 Intersecting Chords in Jordan Curve Let J be a Jordan curve,
and R be the closed region enclosed by J. Let {a, b, c, d} ⊆ J, and e1 =
(a, b), e2 = (c, d) be chords of J such that e1 ⊆ R, e2 ⊆ R, and e1 properly
intersects with e2.

Note that a and b divide J into two parts, then we have c and d belong to
different subdivisions of J.

Proposition 6.4 Let P be a simple polygon, and L be a convex chain (or a reflex
chain) of P, then L is a polygonal chain without self-intersection.

Proof Let L = (v0, v1, · · · , vk−1) and ei = (vi, vi+1), ej = (vj, vj+1) be two
edges in L that are not adjacent. By the definition, vi, vi+1, vj and vj+1
are in counter-clockwise order. Note that vi and vi+1 divides ∂P into two
halves J1 and J2. Since vj and vj+1 are in the same half, by Lemma 6.3,
we can see that ei can not intersect with ej. □

1By our assumption, any three vertices in P can not be collinear, so travelling
through such a polygonal chain must take a left turn or a right turn at each stop.
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6.1. Convex Chain and Reflex Chain

Figure 6.2: The red and blue polygonal chains are convex and reflex chains respectively.
Notice that the edges of these chains are not necessarily the edge of the polygon, and there
are convex chain from A to B and reflex chain from B to A at the same time.

Figure 6.3: This figures illustrates Lemma 6.3.
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6. Spiral Polygon

If we take a look at the generic shape of a convex chain or a reflex chain,
we would find that it ensembles a two dimensional spiral, which is a
curve spinning around the origin with increasing distance. In fact, we
present the following fact without proving it.

Lemma 6.5 Let P be a simple polygon, and C = (v0, v1, · · · , vk−1) be a
convex chain (or a reflex chain) in P. Denote conv(C) as Q. Then, there exists
0 ≤ l ≤ r ≤ k, such that

• ∀l ≤ i < r, vi ∈ ∂C.

• ∀0 ≤ i < l or r ≤ i < k, vi ∈ int(C).

Figure 6.4: This figure illustrates Lemma 6.5, and also the generic shape of a convex chain.
Here one can see that (vl , vr−1) is an edge of the convex hull

.

6.1.1 Reflex Chain

Proposition 6.6 Let P be a simple polygon and (u, v, w) be a reflex chain in P,
then vertex u and w are invisible to each other.

Proof We will argue that uw ̸⊆ P by finding a point r ∈ int(uw) such
that r ̸∈ P.

Notice that P is a simply connected subspace and v ∈ ∂P, then there
exists a simple plane curve C from point v to the point of infinity such
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6.1. Convex Chain and Reflex Chain

that C ∩ P = {v}. Let Q = P ∪ T, where T = (u, w, v) is the triangle with
vertices u, v and w.

Since (u, v, w) is a reflex chain, the reflex angle at vertex v is included in
P, and the convex angle at v is included T, we have v ∈ int(Q). Therefore,
there exists ε > 0 such that the l2-ball B(v, ε) ⊆ Q. However, as v ∈ ∂P,
for any ε > 0, we have B(v, ε) ̸⊆ P. Accordingly, there exists point q such
that q ∈ B(v, ε), q ̸∈ P, and q ∈ T.

Notice that uv ⊆ P and vw ⊆ P, then we have q /∈ uv and q /∈ vw.
Suppose that q ∈ uw, then we already get the wanted point r. Otherwise,
we have u ̸∈ uw and q ∈ int(T).

Further, consider the curve D ⊆ C which connects the point q and the
point of infinity. Since ∂T is a Jordan curve and q is in the interior of T, we
have D ∩ ∂T ̸= ∅. Suppose point r ∈ D ∩ ∂T, then we have r ∈ int(uw).
Hence, since D ∩ P = ∅, we have r ̸∈ P. Thus, uw ̸⊆ P, and vertices u
and w are invisible to each other. □

Figure 6.5: This illustrates the proof of Proposition 6.6. The green area indicates T which
the blue area indicates P.

Lemma 6.7 Let P be a simple polygon and L = (v0, v1, · · · , vk−1) be a reflex
chain on k ≥ 3 vertices in P. Let vi, vj, i < j be two vertices in L. then vi and
vj are visible to each other if and only if j = i + 1. In other words, vertices are
pairwisely invisible unless they are neighbours in the reflex chain L.
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6. Spiral Polygon

Proof We prove this by induction. For the case k = 3, it is induced by
Proposition 6.6. Suppose that it holds for k ≤ m, and consider the case
when k = m + 1.

Let k = m + 1 and L = (v0, v1, · · · , vm) be the reflex chain. We need to
argue that v0 is indeed invisible to vm. Suppose the opposite that v0
and vm are visible to each other, then L can be extended to an ordered
cycle C = (v0, v1, · · · , vm, v0) of m + 1 vertices. By Lemma 2.25, L has at
least m − 2 ≥ 1 chords. Thus, there exists vi, vj, 1 < i − j < m such that
(vi, vj) ∈ VG(P). However, by the induction, (vi, vi+1, · · · , vj) is a reflex
chain of j − i + 1 vertices, implying that vi is actually invisible to vj and
giving rise to a contradiction.

Therefore, for k = m + 1, the statement holds as well. □

Corollary 6.8 Let P be a simple polygon and L = (v0, v1, · · · , vk−1) be a reflex
chain on k ≥ 3 vertices in P, then there exists a hidden vertex set H ⊆ V(L)
such that |H| = ⌈ k

2⌉.

Proof Let t = ⌈ k
2⌉, and H = {v0, v2, · · · , v2(t−1)} ⊆ V(L). By Lemma 6.7,

H is a hidden vertex set and |H| = t = ⌈ k
2⌉. □

Lemma 6.9 Let P be simple polygon whose vertices are in general position and
C be a clique in VG(P), then vertices in C are in convex position.

Proof For the case |C| ≤ 3, as the vertices are in general position, they
are always in convex position.

Consider the case |C| ≥ 4. Suppose the opposite that vertices in C are
not in convex position. Then, there exist four vertices {va, vb, vc, vd}
such that va ∈ int(conv({vb, vc, vd})), where vb, vc, and vd are in counter-
clockwise order in ∂P. Notice that these three vertices subdivide ∂P
into three subchains, and va belongs to exact one of them. Suppose that
va ∈ P(vb, vc), then we have (vb, va, vc) is a reflex chain in P. This means
that vb is actually invisible to vc, contradicting to that C is a clique.

In summary, vertices in C are always in convex position. □

Although the class of visibility graph is already so special, if we try to
solve most of the graph optimization problems in it, we would still find
that these hard problems remains quite hard. For example, the maximum
independent set, minimum clique cover, and the minimum dominating
set are still NP-hard in visibility graphs of simple polygon [34] . In spite
of that, Lemma 6.9 grants us a chance to efficiently find the maximum
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6.1. Convex Chain and Reflex Chain

clique in the visibility graph of a simple polygon. To find a clique, we
are actually looking for a convex hull in the polygon, and its geometric
structure is easy to characterize [29].

6.1.2 Convex Chain

In last subsection, we have seen that the presence of the reflex chain
implies the existence of a hidden vertex set. In this subsection, we will
see that rather than the independent set, the convex chain is likely to be
associated with cliques in the visibility graph.

Proposition 6.10 Let P be a simple polygon and L = (v0, v1, · · · , vk−1) be a
convex chain in P. If v0 is visible to vk−1, then there exists C ⊆ V(L) such that
|C| ≥ ⌈ k

3⌉ and vertices in C are pairwisely visible to each other.

Proof Since v0vk−1 is a chord of ∂P and v0vk−1 ⊆ P, by Lemma 6.3,
v0vk−1 does not intersect with L except for the vertex v0 and vk−1. There-
fore, Q = (v0, v1, · · · , vk−1) is indeed a simple polygon, and Q ⊆ P.

Hence, notice that for all i ∈ [k − 2], vi is a convex vertex in Q. Thus, Q
has at most 2 reflex vertices, which might be v0 and vk−1. By Lemma 3.12,
we have Cover(Q) ≤ 3. Further, let {C1, C2, C3} be a convex covering of
Q, and denote Xi = V(L) ∩ Ci. Then, since

⋃3
i=1 Xi = V(L), there exists

k ∈ [3] such that |Xk| ≥ ⌈ k
3⌉. Notice that vertices in Xk are pairwisely

visible, and Xk is indeed the wanted clique. □

Via Proposition 6.10, we can further see that a convex chain indeed
implies the presence of a clique or an independent set in the visibility
graph by the following lemma.

Lemma 6.11 Let P be a simple polygon and L = (v0, v1, · · · , vk−1) be a

convex chain in P, then there exists X ⊆ V(L) and |X| ≥ ⌊
√

k
3⌋ such that X

is an independent set or a clique in VG(P).

Proof Let t = ⌊
√

3k⌋.

Suppose that there exists vi, vj such that i + t ≤ j and vi is visible to vj−1.
Then, consider the convex chain L′ = (vi, vi+1, · · · , vj−1) which have at
least t vertices. By Proposition 6.10, we know that there exists X ⊆ V(L′)

such that |X| ≥ t
3 ≥ ⌊

√
k
3⌋.

Otherwise, suppose that for all vi, vj with i + t ≤ j, vi is invisible to vj−1.
Now, let’s consider the vertex set X = {v0, vt, · · · , vmt} where m = ⌊ k−1

t ⌋.
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By the assumption, vertices in X are pairwisely invisible. So X is indeed

an independent set in VG(P), and |X| ≥ ⌈ k
t ⌉ ≥ ⌊

√
k
3⌋. □

A graph is called k-Ramsey graph if both its maximum clique and max-
imum independent set have size at most k. Determining the smallest
value of k with respect to the number of vertices n such that a k-Ramsey
graph exists is one of the most well-known questions in Ramsey theory.
In general graph, the answer is almost clear. A Probabilistic method can
show us that there always exists a O(log n)-Ramsey graph [21]. Mean-
while, when it comes to the construction, the (log n)O(1)-Ramsey graph
can be realized explicitly [33], though it does not match the theoretical
optimal.

However, when considering this question this question in visibility graph,
nothing has been known yet. Since the visibility graph is a special class
of graph, it is unlikely that this question yields the same answer as in
general graphs. Lemma 6.11 indicates that in a convex chain of k vertices,
we can always find either a clique or an independent set of Ω(

√
k) size.

Hence, Corollary 6.8 shows that a reflex chain ensures an independent
set of linear size.

Although these observations are not sufficient yet to provide a solution to
this question, we still hold the belief that for k-Ramsey visibility graphs,
k should have asymptotic lower bound significantly higher than log n.
Thus, we propose the following conjecture.

Conjecture 6.12 There exist constants ε > 0, c > 0 such that for any simple
polygon P with n vertices, max{α(VG(P)), ω(VG(P))} ≥ cnε.

6.2 Spiral Polygon

By the definition of convex and reflex chains, we can see that the bound-
ary of a spiral polygon can be decomposed into a convex chain and a
reflex chain that are disjoint.

Definition 6.13 Let P = (p0, p1, · · · , pn−1) be a spiral polygon such that
∀i ∈ [0, k − 1], pi is convex, and otherwise pi is reflex. Then, the convex
interval of R is defined as L(P) := (v0, v1, · · · , vk−1), which is a convex chain.
Similarly, the reflex interval of P is defined as R(P) = (vk−1, vk, · · · , vn−1, v0),
which is a reflex chain.
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6.2. Spiral Polygon

Indeed, spiral polygons possess a specialized geometric structure, pro-
viding simple solutions to otherwise hard geometry problems, including
the hidden points and hidden vertices problem.

Lemma 6.14 Let P be a spiral polygon with r reflex vertices, then HP(P) =
Cover(P) = r + 1.

Proof It suffices to argue that there exists a hidden point set of size r + 1
in P, as by Lemma 3.12 we know that HP(P) ≤ Cover(P) ≤ r + 1.

Let R = (v0, v1, · · · , vr+1) be the reflex interval of P. For i ∈ [0, r], let ui
the midpoint of vivi+1. Then, for any i < j, (ui, vi+1, · · · , vj, uj) is a reflex
chain, if we consider both ui and uj as vertices of P. By Lemma 6.7, ui is
invisible to uj. Therefore, X = {u0, u1, · · · , ur} is indeed a hidden point
set with r + 1 points. □

Lemma 6.15 Let P be a spiral polygon, then VG(P) is an interval graph.

Proof This is proved in [24]. □

Corollary 6.16 Let P be a spiral polygon of n vertices and G be its visibility
graph, then max{α(G), ω(G)} ≥

√
n.

Proof By Lemma 6.15, G is an interval graph. Thus, G is perfect, and
its chromatic number is the same as the clique number, χ(G) = ω(G).
Hence, we know that χ(G)α(G) ≥ n, as a proper coloring of G is a
partition of the vertices into independent sets, where each of them
has at most α(G) vertices. Therefore, we have α(G)ω(G) ≥ n, and
max{α(G), ω(G)} ≥ α(G)+ω(G)

2 ≥
√

α(G)ω(G) ≥
√

n. □

This corollary shows that the visibility graph of a spiral polygon can be a
k−Ramsey graph only if k ≥

√
n, which is much larger than the O(log n)

bound in general graphs.

Lemma 6.17 Let P be a spiral polygon with r reflex vertices, then ⌈ r
2⌉+ 1 ≤

HV(P) ≤ r + 1.

Proof The upper bound is induced by Lemma 3.12, and the lower bound
is implied by Corollary 6.8 because the reflex interval of P is a reflex
chain with r + 2 vertices. □

6.2.1 Continuous Visibility Graph

In last subsection, we showed that in a spiral polygon, the maximum
hidden point set and minimum convex covering shares the same size.
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Then, here comes the question: does this take place in every simple
polygon? The answer is certainly not. The pentagram is a cute counter-
example to that, as is illustrated in the following figure.

Figure 6.6: This is an example shows why maximum hidden point set and minimum convex
covering shares the same size do not always have the save size.

The above pentagram is partitioned into six convex pieces, including five
triangles, denoted as {A, B, C, D, E}, and a pentagon. If we try to place
a hidden point u in the A, then every point in C and D is visible to u.
Hence, notice that B ∪ E can only host one extra hidden point, we have
the hidden point set has size at most 2. Meanwhile, consider the induced
visibility graph on five convex vertices, denoted as G′. It is clear that
G′ is triangle-free, thus each convex piece can only cover two of them.
Therefore, the minimum convex covering is at least 3.

However, we are not satisfied just by such a special case. It is still
interesting that in which class of simply polygons, the minimum convex
covering has the same size as the maximum hidden point set. This is
where we need to introduce the idea of continuous visibility graph.

The traditional vertex visibility graph, can only be used to characterized
the problem in a discrete space, for example, the hidden vertex set.
However, when it comes to the problem whose feasible solution resides in
a continuous space, it becomes less utilized. We propose the continuous
visibility graph, and we believe that it is helpful to address this issue.

Definition 6.18 Let P be a simple polygon, the continuous visibility graph of
P, denoted as CVG(P), is defined as G = (V, E), where V = P, and for any
u ∈ P, v ∈ P, u ̸= v, we have (u, v) ∈ E if and only if uv ⊆ P.

Different from the visibility graph, the continuous visibility graph itself
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has all the points in the polygon as its vertex set, which means that it is
indeed an infinite graph. But, the following theorem can help us migrate
our experience from finite graphs to infinite graphs.

Theorem 6.19 De Bruijn–Erdős theorem [11]: Let G be a infinite graph, if
any finite subgraph of G is c-colorable, then G is also c-colorable.

In other words, χ(G) = max{χ(G′)|G′ ⊆ G, G′ is finite}.

Remark 6.20 The theorem here depends on the adoption of axiom of choice.
Hence, if there is no finite supremum on the chromatic number of finite subgraphs,
then G has infinite chromatic number.

Corollary 6.21 Let G be a infinite graph, if any finite subgraph of G can be
covered by c cliques, then G itself can be covered by c cliques as well.

In other words, κ(G) = max{κ(G′)|G′ ⊆ G, G′ is finite}.

Proof This is implied by the De Bruijn–Erdős theorem as the a proper
coloring in G is indeed a clique cover in G. □

Then, we can discuss the hidden points and convex covering in simple
polygon, with the language of continuous visibility graph.

Lemma 6.22 Let P be a simple polygon, and G = CVG(P) be its continuous
visibility graph, then HP(P) = α(G).

This is indeed the translation of the definition.

Lemma 6.23 Let P be a simple polygon, and G = CVG(P) be its continuous
visibility graph, then Cover(P) = κ(G).

Proof It is clear that κ(G) ≤ Cover(P). Since any convex shape in P is a
clique in G, any convex covering of P is also a proper clique cover of G.

Further, let k = κ(G), and {C1, · · · , Ck} be the minimum clique cover of
G. Then, ∀i ∈ [k], because Ci is a clique in CVG(P), analogous to Lemma
6.9 2, we have conv(Ci) ⊆ P. Therefore, C = {conv(C1), · · · , conv(Ck)} is
a convex covering of P, and Cover(P) ≤ κ(G).

Therefore, Cover(P) = κ(G). □

2We can not generalize the arguments in finite number of points simply. The convex
hull of infinite number of points might no longer be a convex polytope. For example,
the convex hull of a circle is a disk, which has infinite number of extremal points.
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6. Spiral Polygon

Then, we can conclude that the reason why HP(P) = Cover(P) in spiral
polygon P is that the maximum independent set has then same size as
minimum clique cover in CVG(P). Indeed, we can further show that the
continuous visibility graph of the spiral polygon is a chordal graph.

Definition 6.24 Let G be a graph, G is called a chordal graph if any cycle with
k ≥ 4 vertices in G has at least a chord.

Definition 6.25 Let P be a simple polygon, and u, v be two distinct points in
P. The geodesic path between u and v is defined as the shortest curve whose
endpoints are u and v.

Remark 6.26 In a simple polygon, the geodesic path between any two points
should always be a polygonal chain. [39]

Theorem 6.27 Let P be a spiral polygon and G be its continuous visibility
graph, then G is a chordal graph.

Proof Let C = (v0, v1, · · · , vk−1), k ≥ 4 be a cycle in G. There are two
different scenarios to consider.

Case 1: The closed polygonal chain (v0, v1, · · · , vk−1) is not self-intersecting,
then Q = (v0, v1, · · · , vk−1) is a simple polygon and C = ∂Q. Therefore,
by the necessary condition of visibility graph, the cycle (v0, v1, · · · , vk−1)
has at least k − 3 chord in VG(Q). Denote any one of them as (u, v).
Since Q ⊆ P, we have uv ⊆ P, and (u, v) is also a chord of the cycle C.

Case 2: The closed polygon chain (v0, v1, · · · , vk−1) is self-intersecting.
Suppose the edge ei = (vi, vi+1) intersects with the edge ej = (vj, vj+1),
and they are not adjacent. Further, we could assume that these four
vertices are in convex position. Otherwise, if any three of them are
collinear, we would have a triangle in G, and at least one edge of it is a
chord of C.

Thus, we assume that these four vertices are in convex position and ei
properly intersects with ej, as illustrated in the following figure.

Let Q = conv{vi, vi+1, vj, vj+1}, and rewrite it as Q = (q0, q1, q2, q3), and
q4 be the intersection of the diagonals. Then, we are about to argue that
at least three edges of Q are in G.

Suppose the opposite, which mean that at least two edges of Q are
absent in G. Without loss of generality, assume that (q0, q1) ̸∈ G and
(q1, q2) ̸∈ G.
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6.2. Spiral Polygon

For any two distinct points u, v in P, let l(u, v) be the geodesic path
connecting u and v, then we have all the intermediate vertices of l(u, v)
are reflex vertices of P. By our earlier assumption, q0q1 ̸⊆ P, the geodesic
path l(q0, q1) is not a segment. Therefore, there exists a reflex vertex r0
such that r0 ∈ int((q0, q1, q4)). Similarly, there exists another reflex vertex
r1 such that r1 ∈ int((q1, q2, q4)), which is shown in the following figure.

However, notice that r0 and r1 lie on the different sides of q1q3, it is
impossible to connect r1 and r1 via a reflex chain without intersecting
with the segment q1q3.

Thus, at least three edges in E(Q) exist in G. Consider the induced graph
G[V(Q)], there are four vertices but at least five edges. So at least one
edge in this induced graph is a chord of C.

In both scenarios, we have shown that every cycle of at least four vertices
has a chord. Therefore, G is indeed a chordal graph. □

This theorem tells us that G is a perfect graph. Thus, α(G) = κ(G), and
HP(P) = Cover(P).
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Chapter 7

2-Convex Polygon

Let P be a simple polygon, it is already well-known that HP(P) ≤
Cover(P). Of course, HP(P) does not necessarily equals to Cover(P),
then it becomes interesting to ponder the potential gap between them. In
other words, let P be a simple polygon on n vertices, and G = CVG(P)
be its continuous visibility graph, we inquire about the ratio κ(G)/α(G)
with regard to n?

A recent breakthrough in [9] shows that κ(G)/α(G) ≤ 8, giving the first
constant upper bound. However, the largest ratio κ(G)/α(G) known to
us is much less than 8, suggesting that this upper bound might not be
tight and could be further improved.

In this chapter, we will see that if α(G) ≤ 2, the ratio is bounded by 3/2.

7.1 k-Convex Polygon

Before we step into the scope of other polygons which is more compli-
cated, we would like to discuss the k-convexity first, the characterization
of which is previously discussed in [6]. Later, we would talk about funnel
polygons and pseudotriangles in next chapter, which are indeed special
cases of 2-convex polygons.

Definition 7.1 Let M be a collections of finite number of compact sets in the
plane, M is said to be k-convex if for any straight line l in the plane, M ∩ l has
at most k connected components.

Under such condition, M is called a k-convex set, and a simple polygon
P is called k-convex polygon if itself is k-convex.
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7. 2-Convex Polygon

Indeed, the k-convexity is a generalization of the convexity. That is, if
M is 1-convex, it is exactly convex as well. Meanwhile, we can see that
a k-convex set is allowed to be not connected. For example, the set of
two disjoint convex polytope is consider to 2-convex. Moreover, we can
see that this general convexity is somehow preserved through the set
operation.

Lemma 7.2 Let P be a k1-convex polygon and Q be a k2-convex polygon, then
P ∪ Q is (k1 + k2)-convex and P ∩ Q is (k1 + k2 − 1)-convex.

Proof Denote P ∪ Q as X and P ∩ Q as Y, and let l be a straight line in
the plane.

P ∪ Q: l ∩ X = (l ∩ P) ∪ (l ∩ Q). Notice that l ∩ P and l ∩ Q have at
most k1 and k2 connected components respectively. Then, X has at most
k1 + k2 connected components, and P ∪ Q is (k1 + k2)-convex.

P ∩ Q: Suppose that l ∩ P has k1 connected components and l ∩ Q has k2
connected components. Otherwise, we have l ∩ Y ⊆ l ∩ X, and the later
one has less than k1 + k2 connected components, implying that l ∩ Y has
less than k1 + k2 connected components.

Let Γ : l → R be a function such that

∀u, v ∈ l, ∥u − v∥2 = |Γ(u)− Γ(v)|.

Let S = Γ(l ∩ P) and T = Γ(l ∩ Q). Then S is a collection of k1 disjoint
connected compact sets, and T is a collection of k2 disjoint connected
compact sets.

Since any compact connected set in a line is either a point or a segment,
S can be formulated as S =

⋃k1
i=1[ai, bi], and T can be formulated as

T =
⋃k2

i=1[ci, di], where ∀i, ai ≤ bi < ai+1, and ci ≤ di < ci+1.

Then we need to argue that S ∩ T has at most k1 + k2 − 1 connected
components, and we prove this by induction on k1 + k2.

For the case k1 + k2 = 2, k1 = k2 = 1, we clearly have S ∩ T has at most 1
connected components.

Suppose for all the cases with k1 + k2 < n the proposition stands, and
consider the case k1 + k2 = n. Without loss of generality, suppose that
b1 ≤ d1. Thus, S ∩ T = ((S \ [a1, b1]) ∩ T) ∪ ([a1, b1] ∩ T).

By induction, (S \ [a1, b1])∩ T) has at most (k1 − 1) + k2 − 1 = k1 + k2 − 2
connected components. Hence, notice that for i ≥ 2, [a1, b1] ∩ [ci, di] = ∅,
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7.1. k-Convex Polygon

thus [a1, b1] ∩ T has at most 1 connected components. Therefore, S ∩ T
has at most k1 + k2 − 1 connected component, and this completes the
induction.

Therefore, we conclude that P ∩ Q is indeed (k1 + k2 − 1)-convex. □

Then, we can easily establish the connection between the k-convexity and
the hidden point number.

Lemma 7.3 Let P be a simple polygon and HP(P) = k, then P is a k-convex
polygon.

Proof Let l be a line in the plane, and suppose that P∩ l has m connected
components, denote them as C1, C2, · · · , Cm. For each Ci, let ui be a point
in Ci. Notice that for any i ̸= j, uiuj ̸⊆ P ∩ l, otherwise they are in the
same connected component. Hence, since uiuj is always in the subspace
l, we have uiuj ̸⊆ P. Then, X = {u1, u2, · · · , um} is indeed a hidden
point set in P. Note that HP(P) = k, we have m ≤ k, and P is a k-convex
polygon. □

In another way, given a k-convex polygon P, can we guarantee an upper
bound for HP(P) with regard to k? The answer is actually negative. Even
if P is 2-convex, it can still admit an arbitrary large hidden point set. See
the following figure for an illustration.

The above figure shows a spiral polygon P with only three convex vertices,
which is arranged consecutively on the boundary. It is clear that P is
indeed 2-convex, and HP(P) = r + 1, where r is the number of reflex
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7. 2-Convex Polygon

vertices in P. Therefore, an arbitrary large hidden point set can be located
in P as long as we arrange more reflex vertices there.

7.2 2-Convex Polygon

Among the class of k-convex polygons, the 2-convex polygon draws the
most attention from us, as they have the simplest characterization of the
structure (apart from the convex polygon, of course).

Lemma 7.4 Let P be a 2-convex polygon, and u, v be any two consecutive
vertices in the convex hull of P. Let C = P(u, v) = (q0, q1, · · · , qt−1) be the
polygonal chain in P connecting vertex u and v in counterclockwise order, where
q0 = u and qt−1 = v. Then, there exists 0 ≤ r ≤ s < t such that

• ∀i ∈ [0, r), qi is convex in P.

• ∀i ∈ [r, s), qi is reflex in P.

• ∀i ∈ [s, t), qi is convex in P.

Proof This is proved by Lemma 12 in [6]. □

Figure 7.1: q0 and qt are consecutive vertices in the convex hull of P.

In a 2-convex polygon P, let u, v be two consecutive vertices in the convex
hull of P, which are not adjacent in P. Then, the boundary of P between
u and v can be decomposed into at most two convex chains and a reflex
chain. According to that, the following figure illustrates the generic shape
of a 2-convex polygon.
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7.2. 2-Convex Polygon

Definition 7.5 Let C be a polygonal chain, and l be a straight line in the plane.
The crossing number of C and l, denoted as cr(C, l), is defined as the number of
connected components of C ∩ l.

The following figure shows the different situations of counting the cross-
ing numbers.

Figure 7.2: The figures illustrates the crossing number between identical polygonal chains
and different lines, where cr(C1, l1) = 3, cr(C2, l2) = 2, cr(C3, l3) = 1, and cr(C4, l4) = 1.

Lemma 7.6 Let P be a 2-convex polygon, and C be a reflex chain in P. Then
for any line l in the plane, we have cr(C, l) ≤ 2.

Proof We prove this by contradiction. Suppose that cr(C, l) ≥ 3, and let
v1, v2 and v3 be three points in different connected components of C ∩ l,
and v1, v2, v3 are in order with regard to l.

Let V = {v1, v2, v3}. By the assumption, we know that for any i ̸= j, vi
and vj are not in the same edge of C, otherwise they should be in the
same connected component of C ∩ l. Thus, by Lemma 6.7, points in V
are pairwisely invisible. Thus, there exists u1 ∈ int(v1v2), u2 ∈ int(v2v3),
such that u1 ̸∈ P and u2 ̸∈ P. Therefore, we can see that points in V also
belong to different connected components of P ∩ l. This means that P ∩ l
has at least 3 connected components, contradicting to the assumption
that P is 2-convex. □

Figure 7.3: This illustrates the proof of Lemma 7.6.

Corollary 7.7 Let P be a 2-convex polygon, and C be a reflex chain in P. Then
vertices in C are in convex position.
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7. 2-Convex Polygon

Figure 7.4: This figures illustrates the proof of Corollary 7.7.

Proof Let C = (v0, v1, · · · , vk−1), and Q = conv(C). By Lemma 6.5, we
further suppose that V(Q) = {vs, vs+1, · · · , vt−1}, s < t.

We prove this corollary by contradiction. Suppose the opposite that there
exists vertex u ∈ C, such that u ∈ int(Q). By the assumption, we can see
that C(vs, vt−1) ∪ vsvt−1 = ∂Q. Hence, let l be the line passing through
u that is parallel to vsvt−1. Since u ∈ int(Q), we have that cr(l, ∂Q) =
2. Notice that cr(l, vsvt−1) = 0, thereby we know cr(l, C(vs, vt−1)) =
cr(l, ∂Q) = 0. Hence, l also intersects with C at vertex u, which is a
vertex of Q. Therefore, we have cr(l, C) ≥ cr(l, C(vs, vt−1)) + 1 = 3.

According to Lemma 7.6, as C is a reflex in the 2-convex polygon P,
cr(C, l) should be at most 2, which gives rise to the contradiction. □

Previous propositions are discussing about the arrangement of a reflex
chain in a 2-convex chain, and we show that the vertices of such a
reflex chain are always in convex position. However, when considering
a convex chain, additional propositions must be established to achieve
similar results.

Lemma 7.8 Let P be a 2-convex polygon, and C be a convex chain in P. Then
for any line l in the plane, we have cr(C, l) ≤ 4.

Proof This is implied by Lemma 10 in [6]. Any line l that intersects
the convex chain C at least 5 times can be infinitesimally perturbed
into a 6-stabber, which means that P is not 2-convex, leading to the
contradiction. □

Corollary 7.9 Let P be a 2-convex polygon, and C = (v0, v1, · · · , vk−1) be
a convex chain of k vertices in P. Then there exists X ⊆ V(C), such that
|X| ≥ ⌈ k

3⌉ and vertices in X are in convex position.
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7.2. 2-Convex Polygon

Proof Let l be the line passing through vertex v0 and vk−1. By Lemma
7.8, we know that 2 ≤ cr(C, l) ≤ 4. Accordingly, there are three different
cases to consider.

• cr(C, l) = 2. This means that l only intersects with C at vertex v0
and vk−1. Thus, all the vertices in C are in convex position.

• cr(C, l) = 3. Suppose that other than v0 and vk−1, l intersects with
C at point u, and u ∈ vtvt+1. Further, let C1 = {v0, · · · , vt} and
C2 = {vt+1, · · · , vk−1}. We can see that vertices C1 and C2 are both
in convex position, and max(|C1|, |C2|) ≥ k

2 .

• cr(C, l) = 4. Suppose that other than v0 and vk−1, l intersects with
C at point r and u, and r ∈ vsvs+1, u ∈ vtvt+1 and s < t. Let
C1 = {v0, · · · , vs}, C2 = {vs+1, · · · , vt} and C3 = {vt+1, · · · , vk−1}.
Similarly, we can see that vertices in C1, C2, and C3 are all in convex
position, and max(|C1|, |C2|, |C3|) ≥ k

3 .

In summary, we can always find such set X including at least ⌈ k
3⌉ vertices,

that are in convex position. □

Figure 7.5: This figures shows the generic shape of three cases in the proof of Corollary 7.9.

Lemma 7.10 Let P be a 2-convex polygon on n vertices, then there exists a
subset of vertices X ⊆ V(P), such that |X| ≥ ⌈

√
n/2⌉ and vertices in X are

in convex position1.

Proof Let k be the number of vertices in the convex hull of P, and let
Q = conv(P) be the convex hull of P.

By Lemma 7.4, between any two adjacent vertices in the convex hull, the
reflex vertices are arranged consecutively. Thus, there exists at most k

1A similar result is reported in [6], but unfortunately the proof over there is flawed.
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7. 2-Convex Polygon

reflex chains in the boundary of P, such that all the reflex vertices of P
are included in them. Meanwhile, any two consecutive reflex chains are
also connected by a convex chain. Therefore, ∂P can be decomposed into
at most k convex chains and k reflex chains.

If k ≥ ⌈
√

n/2⌉, then let X = V(Q), and X is already a set of vertices in
convex position and |X| ≥ ⌈

√
n/2⌉.

Otherwise, suppose that k < ⌈
√

n/2⌉, which means k ≤ ⌊
√

n/2⌋. Notice
that n edges in ∂P can be decomposed into at most k convex chains and
k reflex chains. Among them, there exists either a convex chain of at least
3n/4k vertices, or a reflex chain of at least n/4k vertices.

Suppose that there exists a convex chain C1, and |C1| ≥ ⌈ 3n
4k ⌉ ≥ ⌈3

√
n

n ⌉.
By Corollary 7.9, there exists X ⊆ V(C1), such that vertices of X are in
convex position, and |X| ≥ ⌈|C1|/3⌉ ≥ ⌈

√
n/2⌉.

Similarly, suppose that there exists a reflex chain C2, and |C2| ≥ ⌈ n
4k⌉ ≥

⌈
√

n/2⌉. By Corollary 7.7, vertices in X = V(C) are already in convex
position.

Therefore, in each case mentioned above, we show that there exists
X ⊆ V(P), such that |X| ≥ ⌈

√
n/2⌉ and vertices in X are in convex

position. □

Remark 7.11 This result is indeed extraordinary, as in a simple polygon of n
vertices, only Ω(log n) vertices are guaranteed to be in convex position. Further,
this lower bound is asymptotically tight.

7.3 Polygon with Two Hidden Points

In the previous section, we explored some fundamental properties of the
2-convex polygon. Now, we are prepared to step into the subclass of
polygons that can accommodate only 2 hidden points. As indicated by
Lemma 7.3, this class of polygons is a subset of the 2-convex polygon.

Proposition 7.12 Let P be a simple polygon and HP(P) = 2. Then all the
reflex vertices in P are not adjacent to each other.

Proof We prove this by contradiction, suppose that there exist vertices
pt and pt+1 in P such that both of them are reflex vertices. Then, we
can see that C = (pt−1, pt, pt+1, pt+2) is indeed a reflex chain. Similar
to the argument in Lemma 6.14, let qi be the midpoint of pi pi+1, and
{qt−1, qt, qt+1} is indeed a hidden point set, contradicting to HP(P) = 2.□
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Proposition 7.13 Let P be a simple polygon and HP(P) = 2, and u, v be two
distinct reflex vertices in P. Then, there exists vertex r ∈ P(u, v) such that r is
a vertex of the convex hull of P.

Proof This is immediately implied by Lemma 7.4. Since HP(P) = 2, any
two reflex vertices in P should not be adjacent. This means that u and
v belong to different intervals of reflex vertices. However, Lemma 7.4
show that, in the polygonal chain that connecting consecutive vertices
in conv(P), reflex vertices should be arranged consecutively. Therefore,
there exists vertex r ∈ P(u, v) such that r ∈ V(conv(P)). □

Given the previous two propositions, we can show the generic shape of a
simple polygon with HP(P) = 2 as the following figure.

Figure 7.6: This figure shows the simple polygon P with HP(P) = 2, which has in total 4
reflex vertices. The gray areas are the four convex pockets of P.

Let P be a simple polygon with HP(P) = 2, and R = {v1, v2, · · · , vk} be
its reflex vertices in counter-clockwise order. Then, for any i ∈ [k], one
might think that vertices in P(vi, vi+1) are in convex position. Indeed,
we can show a stronger result by proving the convex hull of this convex
chain is part of the polygon P.

Definition 7.14 Let P be a simple polygon with HP(P) = 2, and R =
{v1, v2, · · · , vk} be its reflex vertices in counter-clockwise order. The i-th
convex pocket of P, denoted as π(P, i), is defined as the convex hull of vertices
in P(vi, vi+1).

To be specific, the i-th convex pocket is enclosed by the polygonal chain
P(vi, vi+1) and the segment vivi+1.
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7. 2-Convex Polygon

Lemma 7.15 Let P = (p0, p1, · · · , pn−1) be a simple polygon with HP(P) =
2, and R = {v1, v2, · · · , vk} be the set of its reflex vertices in counter-clockwise
order. For any i ∈ [k], we have π(P, i) ⊆ P.

Proof We claim that for any i, vertices in P(vi, vi+1) are in convex position
(the same fact was also claimed in [6]).

Then we suppose the contradiction that there exists i ∈ k such that
π(P, i) ̸⊆ P. Thus, there exists a vertex u of P other than V(P(vi, vi+1))
such that u ∈ int(π(P, i)).

Rewrite vi as ps, and vi+1 as pt, s < t. Consider the line l passing through
vertex w which is parallel to the segment ps pt. Then we can see that l
intersects with P(ps, pt) at point u and r, where the four points ps, u, r,
and pt are in counter-clockwise order. Without loss of generality, we
could assume that the segment ur only intersects ∂P at points u, w, and r.
Otherwise, we could translate l to pass another vertex w′ ∈ int(Q) which
has more distance from ps pt, or infinitesimally perturb the line l around
the vertex w.

Denote the segment ur as z. Then, we can see that the segment z
subdivides P into three parts P1, P2, and P3. As is illustrated in the
following figure, we have ∂P1 = P(r, w) ∪ wr, ∂P2 = P(w, u) ∪ uw, and
∂P3 = P(u, r) ∪ ru.

Further, notice that for any point p ∈ P1 \ z, q ∈ P2 \ z, we have p and q
are invisible to each other. Then, let h1 ∈ int(ps−1ps), h2 ∈ int(ps ps+1 ∩
P(ps, u)), h3 ∈ int(pt−1pt ∩ P(pt, r)), and h4 ∈ int(pt pt+1) be four points
in P. Then we can see that {h1, h2} ⊆ P2 \ z, {h3, h4} ⊆ P1 \ z. Therefore,
{h1, h2} are invisible to {h3, h4}.

Further, as both ps and pt are reflex vertices in P, we know that h1 is
invisible to h2, and h3 is invisible to h4. Therefore, H = {h1, h2, h3, h4} is
a set of four hidden points, contradicting to HP(P) = 2. □

Corollary 7.16 Let P be simple polygon with HP(P) = 2, and R = {v1, · · · , vk}
be the set of its reflex vertices in the counter-clockwise order. Then, the polygon
C = (v1, v2, · · · , vk) is indeed a convex polygon, and C ⊆ P.

Further, C is defined as the kernel convex hull of P, denoted as λ(P).

Proof The proof shares almost the same idea with the one of Lemma
7.15, and it is omitted. □
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Figure 7.7: This illustrate the proof of Lemma 7.15.

Indeed, for a simple polygon P with HP(P) = 2, which has k reflex ver-
tices, it can be decomposed into k + 1 convex pieces, without introducing
any Steiner points. Specifically, P = λ(P) ∪ π(P, 1) ∪ · · · ∪ π(P, k).

Lemma 7.17 Let P be a simple polygon with HP(P) = 2, and R = {v1, · · · , vk}
be the set of its reflex vertices in the counter-clockwise order. Then for any two
non-adjacent convex pockets π(P, i) and π(P, j), which means vi and vj are
not consecutive reflex vertices, we have vertices in π(P, i) and π(P, j) are in
convex position.

Proof For i ∈ [k], rewrite vi as psi , and vi+1 as pti . Further, for the i-th con-
vex pocket, let ai = psi , bi = psi+1, ci = pti−1, and di = pti . Then, we are
about to show that both L = (ci, di, aj, bj) and L′ = (cj, dj, ai, bi) are con-
vex chains, which is sufficient to prove that C = (psi , · · · , pti , psj , · · · , ptj)
is indeed a convex polygon.

As the cases of L and L′ are symmetrical to each other, we only need to
prove the case of L.

First of all, we need to be aware that L = (ci, di, aj, bj) is indeed a proper
polygonal chain in P. By Corollary 7.16, we know that diaj ⊆ λ(P) ⊆ P.
Hence, since cidi ⊆ ∂P and ajbj ⊆ ∂P, we have L ⊆ P.

Next, we prove L is a convex chain by contradiction. Suppose the opposite
that L is not a convex chain. Then, L takes a right turn either at vertex
di or at vertex aj. Without loss of generality, we assume that L takes a
right turn at vertex di, which means C = (ci, di, aj) is a reflex chain in P.
Therefore, ci is invisible to aj.

Further, denote Vis(ci) as Q, and thus aj ̸∈ Q. Then there exists ε > 0
such that B(aj, ε)∩ Q = ∅. Denote such ball as C. Let e1 = cj−1dj−1, e2 =
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Figure 7.8: This figure illustrates the proof of Lemma 7.17.

ajbj be two edges that vertex aj is incident to. Let q1 and q2 be two
points such that q1 ∈ int(e1 ∩ C) and q2 ∈ int(e1 ∩ C). As aj is a reflex
vertex, (q1, aj, q2) is a reflex chain and q1 is invisible to q2. Hence, since
q1 ∈ C and q2 ∈ C, we have that both q1 and q2 are invisible to ci.
Therefore, {ci, q1, q2} is a set of three hidden points, which contradicts to
HP(P) = 2. □

Corollary 7.18 Let P be a simple polygon, and HP(P) = 2. Let {m1, · · · , mt}
be the set of non-adjacent convex pockets of P. Let M =

⋃t
i=1 V(mi), then we

have conv(M) ⊆ P.

Proof For each mi, let ai and bi be the reflex vertices included in mi such
that ∂mi = P(ai, bi) ∪ aibi. By Lemma 7.17, all the vertices in M are in
convex position. Then, we can see that

conv(M) = (a1, b1, · · · , at, bt) ∪ m1 ∪ · · · ∪ mt.

Let X =
⋃t

i=1{ai, bi}, then X is a subset of reflex vertices in P. By
Corollary 7.16, vertices in X are in convex position, and then conv(X) =
(a1, b1, · · · , at, bt) ⊆ λ(P) ⊆ P.

Therefore, conv(M) = conv(X) ∪ m1 ∪ · · · ∪ mt ⊆ P. □

Eventually, we are ready to present the most important result in this
section in the following lemma.
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7.3. Polygon with Two Hidden Points

Lemma 7.19 Let P be a simple polygon and HP(P) = 2, then Cover(P) ≤ 3.

Proof Let k be the number of reflex vertices, and R = {v1, · · · , vk} be
the set of reflex vertices in counter-clockwise order. Let mi = π(P, i)
be the i-th convex pocket of P. The cases for k ≤ 2 is ordinary as
Cover(P) ≤ k + 1 ≤ 3. The case for k = 3 is trivial as well. Thus, we
always assume that k ≥ 4. There are two different cases to consider.

• k is even, and let k = 2t, t ≥ 2. Then, let M1 =
⋃t

i=1 V(m2i−1), Q1 =
conv(M1), and M2 =

⋃t
i=1 V(m2i), Q2 = conv(M2).

By Corollary 7.18, we know that Q1 ⊆ P and Q2 ⊆ P. Further, for
each convex pocket mi, we have either mi ⊆ Q1 or mi ⊆ Q2. Hence,
notice that λ(P) ⊆ Q1, and λ(P) ⊆ Q2 since all the vertices of λ(P)
are included in both M1 and M2. Thus, we have P = Q1 ∪ Q2,
implying that HP(P) ≤ 2.

• k is odd, and let k = 2t+ 1, t ≥ 2. Similarly, let M1 =
⋃t

i=1 V(m2i−1),
Q1 = conv(M1), and M2 =

⋃t
i=1 V(m2i), Q2 = conv(M2). Still, we

have Q1 ⊆ P and Q2 ⊆ P.

Further, let r = v1v2t ∩ v2v2t+1. Let M3 = {r} ∪ V(m2t+1), and
Q3 = conv(M3). By Lemma 7.17, we have vertices in M3 are in
convex position.

Denote the triangle (v2t+1, v1, r) as T, then we let Q3 = m2t+1 ∪ T.
Thus, for each convex pocket mi, we have mi ⊆ Q1 ∪ Q2 ∪ Q3. Con-
sider the kernel convex hull of P, which is λ(P) = (v1, v2, · · · , v2t+1).
Since vertices of λ(P) are in convex position, we have

λ(P) = (v1, v2, · · · , v2t)︸ ︷︷ ︸
⊆Q1

∪ (v2, v3, · · · , v2t+1)︸ ︷︷ ︸
⊆Q2

∪ (v2t+1, v1, r)︸ ︷︷ ︸
⊆Q3

.

Accordingly, we know λ(P) ⊆ Q1 ∪ Q2 ∪ Q3, and hence P = Q1 ∪
Q2 ∪ Q3, implying that HP(P) ≤ 3.

In summary, given that HP(P) = 2, we always show that Cover(P) ≤ 3,
thus completing the proof. □

But, this lemma only shows us the picture of a very special case. For cases
where HP(P) ≥ 3, which are considerably more complex, no definitive
results have been established so far.

75



7. 2-Convex Polygon

Figure 7.9: This figure shows the convex covering of P, which has 5 convex pockets. The
blue, green, and grey areas are Q1, Q2, and Q3 respectively, which follows the notation in
the proof of Lemma 7.19.
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Chapter 8

Funnel Polygon and
PseudoTriangle

Previously, we took a close look at the spiral polygon, of which the
boundary is composed of a convex chain and a reflex chain. Moreover, if
we allow the polygon to have more convex and reflex chains, its structure
would become more complicated. This exploration leads us to the funnel
polygon and the pseudotriangle, which exhibit two and three reflex
chains on their boundaries, respectively.

In this chapter, we will present brand new characterization on the visibil-
ity graph of them. Based on that, we will outline an efficient algorithm
for finding the maximum hidden vertex set in the funnel polygon. Addi-
tionally, we will present a 2/3-approximation for the maximum hidden
vertex set problem in the pseudotriangle. Note that prior to this, only a
trivial 1/2-approximation was available.

8.1 Funnel Polygon

In this section, we are ready to discuss the funnel polygon1. The Fun-
nel polygon is a fundamental geometric structure in lots of visibility
algorithms, and also, it is a subclass of the 2-convex polygon.

Definition 8.1 Let P be a simple polygon, P is called a funnel polygon if

• P only has three convex vertices,

• there exist convex vertices u and v in V(P), such that (u, v) ∈ E(P).
1Someone calls it the tower polygon.
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8. Funnel Polygon and PseudoTriangle

Such edge (u, v) is called a convex edge of P.

Let P be a funnel polygon. Without loss of generality, we always assume
that P has only one convex edge. Otherwise, P will actually become a
spiral polygon, since all the convex vertices of P are consecutive now,
and of course we have already talked about spiral polygons before.

Accordingly, we note that the boundary of a funnel polygon can always
be decomposed into two reflex chains and a convex edge.

Figure 8.1: This figure show the shape of a funnel polygon P, where a, b, c are its convex
vertices, and (b, c) ∈ E(P).

Definition 8.2 Let P be a funnel polygon, and a, b, and c be its convex vertices
in counter-clockwise order such that (b, c) ∈ E(P).

The left reflex interval of P, denoted as L(P), is defined as the set of vertices in
P(c, a). L(P) := {λ0, λ1, · · · , λl}, and (λl, λl−1, · · · , λ0) = P(c, a).

The right reflex interval of P, denoted as R(P), is defined as the set of vertices
in P(a, b). R(P) := {ρ0, ρ1, · · · , ρr}, and (ρ0, ρ1, · · · , ρr) = P(a, b).

Remark 8.3 Different from our conventions before, vertices in L(P) are actu-
ally indexed in clockwise order. Hence, we usually write L(P) as L, and R(P)
as R, if the polygon P that we refer to is clear.

Definition 8.4 Let P be a funnel polygon, and L and R be its left and right
reflex intervals respectively.

For any i ≤ j, the set of vertices between λi and λj, denoted as L(i, j), is defined
as L(i, j) := {λi, λi+1, · · · , λj} = V(P(λj, λi)).

Similarly, for any i ≤ j, R(i, j) := {ρi, ρi+1, · · · , ρj} = V(P(ρi, ρj)).
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8.1. Funnel Polygon

8.1.1 Characterization of Funnel Polygon Visibility Graph

Following the definitions above, we begin to present new characteriza-
tions of the visibility graph of funnel polygon. At the very beginning, we
show the following fact about reflex chains without a proof, and then
establish our own arguments on the structure of funnel polygons.

Lemma 8.5 (Continuity of Visibility). Let P be a simple polygon, and
L = (v0, v1, · · · , vk−1) be a reflex chain in P. Let u be a point in P such that
IP(u, v0) = IP(u, vk−1) = 1. Then, for any point r ∈ L, we have IP(u, r) = 1
as well.

Accordingly, given a point u and a reflex chain L, Vis(u) ∩ L is indeed a
subchain of L. In other words, points in L that is visible to u is actually
continuous, which make up a connected simple curve. By this continuity
of the visibility, we immediately have the following propositions.

Proposition 8.6 Let P be a funnel polygon, and L and R be the left and right
reflex intervals respectively.

Then, ∀u ∈ L, there exist i ≤ j such that N(u) ∩ R = R(i, j). Meanwhile,
∀v ∈ R, there exist i ≤ j such that N(v) ∩ L = L(i, j).

Proof Since R is a reflex chain in P, by Lemma 8.5, for any vertex u ∈ L,
vertices of R that is visible to u should be consecutive. Thus, there exist
indices i ≤ j such that N(u) ∩ R = R(i, j), and vice versa. □

Generally speaking, consider any vertex u, the vertices on the other reflex
chain that are visible to u make up an interval. Further, we will prove
the endpoints of such intervals is monotonely increasing through the
following arguments.

Proposition 8.7 Let P = (p0, · · · , pn−1) be a funnel polygon, and (p0, pn−1)
be the convex edge of P. Then, the polygonal chain T = (p0, p1, · · · , pn−1) is
indeed a terrain.

Proof We sketch the main idea. Let pt be the convex vertex of P which
is not incident to the convex edge. Further, we specify the y-axis by
letting it parallel to −−−→pt pt+1. After that, we specify the x-axis by letting it
perpendicular to the y-axis.

One can see that, by this specification, T is indeed x-monotone. □

According to Proposition 8.7, we denote P(p0, pn−1) as T, and we T =
(λl, · · · , λ1, λ0(ρ0), ρ1, · · · , ρr). Further, we always assume that T is x-
monotone, and the segment λlρr lies above T.

79



8. Funnel Polygon and PseudoTriangle

Figure 8.2: This figure illustrates the proof of Lemma 8.8, in which the bold polygonal chain
represents the terrain. Meanwhile, the vertices are connected if and only if they are visible to
each other.

Lemma 8.8 Let P = (p0, p1, · · · , pn−1) be a funnel polygon, such that

• the polygonal chain T = (p0, p1, · · · , pn−1) is a terrain,

• (p0, pn−1) is a convex edge of P, and p0pn−1 lies above T.

Then, we have VG(P) = VG(T).

Proof Notice that p0pn−1 lies above T, and p0, pn−1 are the endpoints of
T, then for any point u,

u ∈ P ⇐⇒ u lies below p0pn−1 ∧ u lies above T.

Accordingly, for any vertices u and v,

uv ⊆ P ⇐⇒ uv lies below p0pn−1 ∧ uv lies above T.

Hence, notice that uv always lies below p0pn−1, we have

uv ⊆ P ⇐⇒ uv lies above T,
(u, v) ∈ VG(P) ⇐⇒ (u, v) ∈ VG(T).

Thus we seal the conclusion that VG(P) = VG(T). □

This lemma shows that the visibility graph of a funnel polygon is indeed
the visibility graph of a terrain. Thus, we can utilize the known facts
about terrain, to better our understanding about funnel polygons.

Corollary 8.9 Let P be a funnel polygon, and L = {λi|i ∈ [0, l]}, R = {ρi|i ∈
[0, r]} be its left and right reflex intervals.

For any 0 ≤ a < b ≤ l, 0 ≤ c < d ≤ r, if IP(λa, ρd) = 1, and IP(λb, ρc) = 1,
then we have IP(λb, ρd) = 1 as well.
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8.1. Funnel Polygon

Proof It is implied by the X-property of the terrain visibility graph [2].□

Proposition 8.10 Let P be a funnel polygon, and L = {λi|i ∈ [0, l]}, R =
{ρi|i ∈ [0, r]} be its left and right reflex intervals.

For any i ∈ [0, l], j ∈ [0, r], if IP(λi, ρj) = 0, then exact one of the following
statement holds:

• N(λi) ∩ R(j, r) = ∅,

• N(ρj) ∩ L(i, l) = ∅.

Proof We sketch the main idea of the proof.

Denote the geodesic path from vertex λi to vertex ρj as C, then C is a reflex
chain in P, which is implied by Theorem 1 in [28]. Let X = V(C) \ {λi, ρj}
be the intermediate vertices of C, then C takes a right turn at each
vertex of X. Thus, we have either X ⊆ L, or X ⊆ R. Hence, note that
L ∩ R = {λ0}, which only includes a convex vertex. Thus, X ⊆ L and
X ⊆ R are disjoint events, and exact one of them happens.

If X ⊆ L, then we have N(λi) ∩ R(0, j) = ∅, and N(ρj) ∩ L(i, l) = ∅.

Otherwise, if X ⊆ R, then we have N(λi) ∩ R(j, r) = ∅, and N(ρj) ∩
L(0, i) = ∅, which completes the proof. □

Finally, we can derive the monotonicity for the visibility intervals in a
funnel polygon.

Lemma 8.11 Let P be a funnel polygon, and L = {λi|i ∈ [0, l]}, R = {ρi|i ∈
[0, r]} be its left and right reflex intervals.

For all i ∈ [0, l], let αi, βi be the integers such that N(λi) ∩ R = R(αi, βi).

For all i ∈ [0, r], let γi, δi be the integers such that N(ρi) ∩ L = L(γi, δi).

Then, the four sequences {αi}l
i=0, {βi}l

i=0, {γi}r
i=0, and {δi}r

i=0 are all mono-
tonely increasing.

Proof It suffices to show that ∀i ≤ l − 1, αi ≤ αi+1, and βi ≤ βi+1, since
the argument for γi and δi is the same.

First we argue that ∀i ≤ l − 1, βi ≤ βi+1. For the sake of contradiction,
suppose there exists k such that βk > βk+1. Let t = βk, and s = βk+1. By
the definition, we know that IP(λk, ρt) = IP(λk+1, ρs) = 1. By Corollary
8.9, we know that IP(λk+1, ρt) = 1, which means λk+1 is also visible to
ρt. However, since βk+1 = s < t, we know ρt ̸∈ N(λk+1), which means
λk+1 is actually invisible to ρt, arriving at a contradiction.
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8. Funnel Polygon and PseudoTriangle

Next we will show that ∀i ≤ l − 1, αi ≤ αi+1. For the sake of contradiction,
suppose there exists k such that αk > αk+1. Let t = αk, and s = αk+1. By
the definition, we have IP(λk, ρt) = IP(λk+1, ρs) = 1 and IP(λk, ρs) = 0.
By the 8.10, we should have either N(λk) ∩ R(s, r) = ∅, or N(ρs) ∩
L(k, l) = ∅. However, we can already see that ρt ∈ N(λk) ∩ R(s, r) ̸= ∅,
and λk+1 ∈ N(ρs) ∩ L(k, l) ̸= ∅, thus leading to the contradiction. □

The significance of the above arguments lies in the fact that the conti-
nuity and monotonicity of the visibility intervals in the funnel polygon
provide us with a favorable opportunity to efficiently solve hard visibility
problems. For instance, an O(n4) algorithm has been proposed for figur-
ing out the minimum dominating set in a funnel polygon [25]. Further,
it is worth noting that its time complexity can be improved to O(n2),
because the O(n4) algorithm only observed the continuity, but put the
monotonicity aside.

In addition to investigating the local structure of the visible area, we
are also interested in having a global perspective on the visibility graph
of funnel polygons. We can explore this aspect further through the
following propositions.

Definition 8.12 Let G be a simple graph, G is called a weakly triangulated
graph if neither G nor G contains a chordless circle with length at least five.

Theorem 8.13 Let G be a weakly triangulated graph, then G is perfect.

Proof This is proved in [30]. □

Lemma 8.14 Let P be a funnel polygon, then VG(P) is a weakly triangulated
graph, and thus a perfect graph.

Proof This is proved in [14]. □

Lemma 8.15 Let P be a funnel polygon, and G be its visibility graph. Then G
is K5-free.

Proof Let G = VG(P) be its visibility graph. Suppose the opposite that
there exists a clique C in G, and |C| ≥ 5.

Let L and R be the left and right intervals of P, then V(P) = L ∪ R,
C = (C ∩ L) ∪ (C ∩ R). Thus, max{|C ∩ L|, |C ∩ R|} ≥ 3, and suppose
that |C ∩ L| ≥ 3. By this, we can see that X = C ∩ L is a clique of size
at least three in L. However, since the vertices of L compose a reflex
chain in P, we know that G[L] is actually triangle-free, thus leading to
the contradiction. □
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Corollary 8.16 Let P be a funnel polygon on n vertices, then HV(P) ≥ n
4 .

Proof Let G be the visibility graph of P, then by Lemma 8.14, G is weakly
triangulated and perfect. Accordingly, HV(P) = α(G) = κ(G).

By Lemma 8.15, we have G is K5-free, and thus ω(G) ≤ 4. Therefore, we
have κ(G) ≥ n/ω(G) ≥ n

4 , implying that HV(P) ≥ n
4 . □

8.1.2 Hidden Points and Hidden Vertices in Funnel Poly-
gon

In this subsection, we will talk about how to figure out the maximum
hidden vertex set and the maximum hidden point set in a funnel polygon.

Lemma 8.17 Let P be a funnel polygon, and L = {λi|i ∈ [0, l]}, R = {ρi|i ∈
[0, r]} be its left and right reflex intervals.

For any i ∈ [0, l], j ∈ [0, r], let f (i, j) denote the size of maximum hidden vertex
set in L(0, i) ∪ R(0, j).

Then, we can compute { f (i, j)|∀i ∈ [0, l], j ∈ [0, r]} in time complexity O(n2).

Proof We first present our algorithm, then prove its correctness and
efficiency.

For each i ∈ [0, l], let αi be the smallest integer such that IP(λi, ραi) = 1.

For each j ∈ [0, r], let γj be the smallest integer such that IP(λγj , ρj) = 1.

If either i = 0 or j = 0, f (i, j) will be trivial be compute as L(0, i)∪ R(0, j)
is the set of vertices in a reflex chain.

Otherwise, we suppose that i ≥ 1 and j ≥ 1. Then, we consider following
different cases.

• IP(λi, ρj) = 1, then let f (i, j) = max{ f (i − 1, j), f (i − 2, αi − 1) + 1}.

• IP(λi, ρj) = 0. By Proposition 8.10, we have either αi > j or γj > i. If
αi > j, then let f (i, j) = max{ f (i − 1, j), f (i − 2, j) + 1}. Otherwise,
if γj > i, let f (i, j) = max{ f (i, j − 1), f (i, j − 2) + 1}.

In summary, we have

f (i, j) =


max{ f (i − 1, j), f (i − 2, αi − 1) + 1}, IP(λi, ρj) = 1,
max{ f (i − 1, j), f (i − 2, j) + 1}, αi > j,
max{ f (i, j − 1), f (i, j − 2) + 1}, γj > i.
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8. Funnel Polygon and PseudoTriangle

To prove the correctness, we need to argue that f (i, j) = α(G[L(0, i) ∪
R(0, j)]). We denote such proposition as φ(i, j), and we prove it by
induction on i + j.

For 0 ≤ i + j ≤ 2, we assume that φ(i, j) holds. Since there are only
constant number of vertices to consider, such f (i, j) can be computed in
O(1) time. Further, for either i = 0 or j = 0, we assume φ(i, j) always
holds as well, since in such case f (i, j) is also trivial to compute.

Suppose that ∀i + j ≤ k, φ(i, j) holds. Then let’s consider the case for
i + j = k + 1.

Let X be the maximum hidden vertex set of L(0, i) ∪ R(0, j), and we
argue that f (i, j) = |X|. There are following different cases to consider.

• IP(λi, ρj) = 1, then we have αi ≤ j. In this case, if λi ∈ X, then X \
{λi} is indeed maximum hidden vertex set in L(0, i − 2)∪ R(0, αi −
1), thus by induction we have |X| = f (i − 2, αi − 1). Otherwise, if
λi ̸∈ X, then X is the maximum hidden vertex set in L(0, i − 1) ∪
R(0, j), and |X| = f (i − 1, j). Therefore, f (i, j) = |X| = max{ f (i −
1, j), f (i − 2, αi − 1) + 1}, φ(i, j) still holds.

• IP(λi, ρj) = 0, then by Proposition 8.10, we have either αi > j, or
γj > i, and exact one of them is true. We only prove the case for
αi > j, as the argument for γj is almost the same. Suppose that
αi > j ≥ 1, and this implies i ≥ 2, since otherwise we should have
αi = 0. In this case, if λi ̸∈ X, then X is the maximum hidden vertex
set in L(0, i − 1)∪ R(0, j), and |X| = f (i − 1, j). Otherwise, we have
λi ∈ X. Notice that the only vertex in L(0, i − 1) ∪ R(0, j) that is
visible to λi is λi−1. Thus, X \ {λi} is the maximum hidden vertex
set in L(0, i − 2) ∩ R(0, j), and f (i, j) = |X| = max{ f (i − 1, j), f (i −
2, j) + 1}, implying that φ(i, j) still holds for this case.

Therefore, we can see that in both cases φ(i, j) remains true when i + j =
k + 1, thus completing the induction. □

Indeed, by Lemma 8.8, we can see that the visibility graph of a funnel
polygon is also the visibility graph of a terrain. Therefore, finding the
maximum hidden vertex in the funnel polygon is the same as in the
terrain. An alternative solution for finding the maximum hidden vertex
set in a terrain will be illustrated in the next chapter, which merely relies
on the persistence of the terrain.

When it comes to the maximum hidden point set, similar arguments can
be established by the following proposition.
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Lemma 8.18 Let P = (p0, p1, · · · , pn−1) be a funnel polygon, and

• the polygonal chain T = (p0, p1, · · · , pn−1) is a terrain,

• (p0, pn−1) is a convex edge of P.

Let H be a hidden point set in P, then there always exists another hidden point
set H′, such that |H′| = |H| and H′ ⊆ T.

Proof Without loss of generality, suppose that p0pn−1 lies above T.

Let H = {h1, · · · , hk}, and hi = (xi, yi). For each i ∈ [k], let h′i = (x′i, y′i)
be the point in T such that xi = x′i. Note that such h′i always exists and
is unique in T. Further, since hi ∈ P, we have hi lies above T, and thus
y′i ≤ yi.

For any i ̸= j, we have xi ̸= xj, otherwise hi is visible to hj. Hence,
since hihj ̸⊆ P and hihj lies below p0pn−1, we know that hihj does not
completely lie above T. Thus, there exists vertex r, such that r lies strictly
above hihj. Meanwhile, since y′i ≤ yi and y′j ≤ yj, we have r also lies

strictly above h′ih
′
j, thus making h′ih

′
j ̸⊆ P.

Therefore, H′ = {h′1, · · · , h′k} is indeed a hidden point set in P, and by
definition, |H′| = |H| and H′ ⊆ T. □

In fact, such H′ is also a hidden point set with regard to the terrain
T. Accordingly, maximum hidden point set in a funnel polygon, again,
shares the same size with maximum hidden point set in its corresponding
terrain. In the next chapter, we will illustrate how to solve it efficiently in
polynomial time.

In fact, recently, a linear time algorithm has been proposed in [9] to
figure out both HP(P) and HV(P) for a funnel polygon spontaneously,
which is purely based on explicit geometric constructions. The following
proposition is immediately implied by it.

Lemma 8.19 Let P be a funnel polygon on n vertices, then HP(P) and HV(P)
is computable in O(n) time.

But still, we can get beneficial implications from our algorithm, especially
for the scenario in the pseudotriangle, which is a natural generalization
of the funnel polygon.
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8.2 Pseudotriangle

In this section, we focus on the maximum hidden vertex in the pseudotri-
angle. We will propose an approximation algorithm in polynomial time,
which gives us a 2

3-competitive solution. Prior to this, the best known
competitive ratio is 1

2 in [9]. Our algorithm notably improves it, and
provides the first non-trivial competitive ratio so far.

Definition 8.20 Let P be a simple polygon, P is called a pseudotriangle if P
only has three convex vertices.

Figure 8.3: This illustrates the typical shape of a pseudotriangle P, where u, v, w are the
reflex vertices of it.

Let P be pseudotriangle, and u, v, w be its convex vertices in counter-
clockwise order. We always assume that P does not have any convex
edge. Thus, we can see that ∂P can be decomposed into three reflex
chains, subdivided by the reflex vertices u, v, and w.

By definition, the pseudotriangle is a superclass of the funnel polygon.
In fact, a pseudotriangle can be constructed by substituting the convex
edge with a reflex chain in a funnel polygon. Through this similarity of
the structure, similar propositions can be argued for the pseudotriangle.

Definition 8.21 Let P be a pseudotriangle, u be a convex vertex in it. Denote
the other two convex vertices as u, w, and u, v, w are in counter-clockwise order.

The left reflex interval with regard to vertex u, denoted as Lu, is defined as the set
of vertices in P(u, v). Lu = {λ0, λ1, · · · , λl}, and (λ0, λ1, · · · , λl) = P(u, v).

The right reflex interval with regard to vertex u, denoted as Ru, is defined as the
set of vertices in P(w, u). Ru = {ρ0, ρ1, · · · , ρr}, and (ρr, ρr−1, · · · , ρ0) =
P(w, u).

Then, Lu(i, j) := {λi, λi+1, · · · , λj}, and Ru(i, j) := {ρi, ρi+1, · · · , ρj}.
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Lemma 8.22 Let P be a pseudotriangle, and u be a convex vertex of P. Let Lu,
Ru, {λi}l

i=0, {ρi}r
i=0 follow the definitions and notations in Definition 8.21.

Then we have the following propositions:

• ∀i ∈ [0, l], there exists αi, βi, such that N(λi) ∩ Ru = Ru(αi, βi).

• ∀j ∈ [0, r], there exists γj, δj, such that N(ρj) ∩ Lu = Lu(γj, δj).

• The sequences {αi}l
i=0 and {γj}r

j=0 are both monotonely increasing.

The proof itself mostly agrees with our arguments for the funnel polygon,
so we do not present it here again.

Compared to the funnel polygon, {αi} and {γi} remains monotonely in-
creasing, while {βi} and {δi} might no longer be monotonely increasing.
The reason is that {αi} and {γi} only depends the local structure of Lu
and Ru, which is actually the same as the funnel polygon. However, {βi}
and {δi} are jointly determined by all reflex chains, as the window in its
visible area can also be incident to the reflex vertex on the third chain.
See the following figure for illustration.

Figure 8.4: This figures illustrate why {βi}l
i=0 might no longer be monotonely increasing.

The green and blue area are the visible area of λ1 and λ4, where β2 = 2, β4 = 1, and
β2 > β4

.

Take {βi} as an example. Indeed, the increase and decrease in βi provide
us with much information about the geometric structure. Let k be a
integer, and s = βk, t = βk+1. If s < t, then we know that λk can not see
ρs+1 because its vision is blocked by the vertex ρs, which means ρs is
incident to a window in Vis(λk). However, if s > t, then we can say that
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8. Funnel Polygon and PseudoTriangle

λk+1 can not see ρt+1 because its vision gets blocked by a vertex r on the
third reflex chain. See the following figures for detailed illustration.

Figure 8.5: This illustrates the case when βk < βk+1. The grey area indicates the visible
area of λk, where Vis(λk) has a window incident to the reflex vertex ρs.

Figure 8.6: This illustrates the case when βk > βk+1. The grey area indicates the visibility
area of λk+1. One can see that Vis(λk+1) has a window incident to reflex vertex z, while
z ̸∈ Lu, and z ̸∈ Ru.

In fact, the monotonicity in {βi} and {γi} indicates the structure of the
visible area of λi and ρi, and itself can be characterized by the following
proposition.

Proposition 8.23 Let P be a pseudotriangle, and u be a convex vertex of P. Let
{βi}l

i=0 and {δi}r
i=0 follow the definition and notation in Lemma 8.22. Then

we have the following propositions:
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8.2. Pseudotriangle

• ∃ k ∈ [0, l], such that ∀i < k, βi ≤ βi+1 and ∀i ≥ k, βi ≥ βi+1.

• ∃ k ∈ [0, r], such that ∀i < k, γi ≤ γi+1 and ∀i ≥ k, γi ≥ γi+1.

8.2.1 (2/3)-Approximation for Maximum Hidden Vertex
Set in PseudoTriangle

Through the above propositions, we can compute the maximum hidden
vertex set for Lu ∪ Ru via dynamic programming.

Definition 8.24 Let X be a set of finite number of integers, X is a proper set if
one of the following stands:

• There exists i ≥ 0 such that X = [0, i].

• There exists i, j, k ≥ 0, i + 2 ≤ j ≤ k, such that that X = [0, i] ∪ [j, k].

In other words, X is consider to be a proper set if it is composed by two
groups of consecutive integers, with one of them including the zero.

Definition 8.25 Let X be a proper set, and we define

τ(X) := max{x|x ∈ X},
σ(X) := [0, τ(X)],
η(X) := σ(X) \ X.

Accordingly, if X = [0, i] ∪ [j, k], i + 2 ≤ j, then we have σ(X) = [0, k] and
η(X) = [i + 1, j − 1].

Definition 8.26 Let P be a pseudotriangle, and u be a convex vertex of P. Let
Lu = {λi}l

i=0, Ru = {ρi}r
i=0 be the left and right reflex intervals with regard

to vertex u.

Let X be a set of integers and X ⊆ [0, l]. Then, the subset of Lu induced by X,
denoted by Lu[X], is defined as Lu[X] := {λi|i ∈ X}.

Let Y be a set of integers and Y ⊆ [0, r]. Then, the subset of Ru induced by Y,
denoted by Ru[Y], is defined as Ru[Y] := {ρi|i ∈ Y}.

Definition 8.27 Let P be a pseudotriangle, and u be a convex vertex of P. Let
Lu = {λi}l

i=0, Ru = {ρi}r
i=0 be the left and right reflex intervals with regard

to vertex u.

Let X, Y be two sets of integers, then (X, Y) is called a proper pair with regard
to vertex u if and only if
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8. Funnel Polygon and PseudoTriangle

• X ⊆ [0, l], and X is a proper set.

• Y ⊆ [0, r], and Y is a proper set.

• ∃ S ⊆ [τ(X) + 2, l], such that N(Lu[S]) ∩ Ru[σ(Y)] = Ru[η(Y)].

• ∃ T ⊆ [τ(Y) + 2, r], such that N(Ru[T]) ∩ Lu[σ(X)] = Lu[η(X)].

After introducing the preliminary definitions and notations, we are
eventually ready to present our algorithm.

Lemma 8.28 Let P be a pseudotriangle on n vertices, and u be a convex vertex
of P. Let Lu = {λi}l

i=0, Ru = {ρi}r
i=0 be the left and right reflex intervals with

regard to vertex u.

Denote the set of all proper pairs with regard to u as M. For any (X, Y) ∈ M,
denote f (X, Y) be the size of maximum hidden vertex set in Lu[X] ∪ Ru[Y].

Then, { f (X, Y)|(X, Y) ∈ M} can be computed in time O(n6).

Proof We first present our algorithm, and then prove its correctness and
efficiency.

Let {αi}l
i=0, {βi}l

i=0, {γi}r
i=0, and {δi}r

i=0 follow the definitions and nota-
tions in Definition 8.21.

For the case either |X| ≤ 2 or |Y| ≤ 2, f (X, Y) is trivial to compute, as
the optimal solution in this case will be a set of vertices on the same
reflex chain.

Thus, we always assume that |X| > 2 and |Y| > 2. Denote τ(X) as i, and
τ(Y) as j. Then there are following different scenarios to consider.

A. IP(λi, ρj) = 1. Then j ∈ [αi, βi], thus we have Y \ [αi, βi] is indeed
proper set. Thus, let

f (X, Y) = max{ f (X ∩ [0, i − 1], Y), f (X ∩ [0, i − 2], Y \ [αi, βi]) + 1}.

B. IP(λi, ρj), indicating that λi is invisible to ρj, and this includes three
subclass cases.

• (a) [αi, βi]∩ σ(Y) = ∅. Then, no vertex in σ(Y) is visible to λi. Thus,
we let

f (X, Y) = max{ f (X ∩ [0, i − 1], Y), f (X ∩ [0, i − 2], Y) + 1}.

• (b) [γj, δj] ∩ σ(X) = ∅. Similar to the case (a), we let

f (X, Y) = max{ f (X, Y ∩ [0, j − 1]), f (X, Y ∩ [0, j − 2]) + 1}.
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8.2. Pseudotriangle

• (c) [αi, βi] ⊆ σ(Y) and [γj, δj] ⊆ σ(X).

In this case, if X = σ(X), then X \ [γj, δj] is another proper set, and
we let

f (X, Y) = max{ f (X, Y ∩ [0, j − 1]), f (X \ [γj, δj], Y ∩ [0, j− 2]) + 1}.

Otherwise, if Y = σ(Y), then Y \ [αi, βi] is another proper set, and
we let

f (X, Y) = max{ f (X ∩ [0, i − 1], Y), f (X ∩ [0, i − 2], Y \ [αi, βi]) + 1}.

Otherwise, we have X ̸= σ(X) and Y ̸= σ(Y), imply that η(X) ̸= ∅
and η(Y) ̸= ∅.

In this case, we will argue that both η(X) ∩ [γj, δj] ̸= ∅ and η(Y) ∩
[αi, βi] ̸= ∅, which means both X \ [γj, δj] and Y \ [αi, βi] are proper
sets.

Let’s consider η(Y) ∩ [αi, δi], and denote η(Y) = [s, t]. Since (X, Y)
is a proper pair, by the definition, there exists k ≥ i + 2, such
that αk = s. Suppose that βi ≥ s, then we are already done
since η(Y) ∩ [αi, δi] ̸= ∅. Otherwise, we have βi < s, and thus
βi < βk = s. By Proposition 8.23, ∀i′ ≤ i, we have βi′ ≤ βi < s.
Thus, any vertex in Lu[σ(X)] is invisible to ρj. Therefore, we have
[γj, δj] ∩ σ(X) = ∅, and this situation belongs to the case (b).

Similarly, if η(X) ∩ [γj, δj] = ∅, then we have [αi, βi] ∩ σ(Y) = ∅,
and actually this belongs to (a).

Thus, Y \ [αi, βi] is a proper set, and we let

f (X, Y) = max{ f (X ∩ [0, i − 1], Y), f (X ∩ [0, i − 2], Y \ [αi, βi]) + 1}.

By the above discussion, we conclude every possible situation via dy-
namic programming.

To prove the correctness of it, we just need to apply induction on the
|X|+ |Y|, and consider every possible situation of the optimal solution.
It has almost the same idea and procedure as the one of Lemma 8.17, so
we do not present it here.

Finally, we are about to analyze the time complexity of it. Notice that
both Lu and Ru have less than n vertices, there are at most n3 proper
sets in [0, l] and [0, r], and in total at most n6 proper pairs with regard to
vertex u.
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8. Funnel Polygon and PseudoTriangle

Further, for each proper pair (X, Y), it takes O(1) time to compute it via
the dynamic programming. Thus, the total complexity is O(n6), thus
completing the proof. □

Theorem 8.29 Let P be a pseudotriangle with n vertices, then a hidden vertex
set X, with |X| ≥ 2

3HV(P), can be computed in O(n6).

Proof Let v1, v2, v3 be the convex vertices of P. For each i, let Li and Ri
be left and right reflex intervals with regard to vi, and Si = Li ∪ Ri.

Let OPT be the maximum hidden vertex set of P, then we have

3

∑
i=1

|OPT ∩ Si| ≥ 2|OPT|

since each vertex appears at least twice in all the Si.

Further, let fi be the size of maximum hidden vertex set in Si, which by
Lemma 8.28 can be computed in O(n6) time. Hence, since OPT ∩ Si is
also a hidden vertex set in Si, we have

3

∑
i=1

fi ≥
3

∑
i=1

|OPT ∩ Si| ≥ 2|OPT|.

Therefore,

max{ f1, f2, f3} ≥ 2
3
|OPT|,

which grants us a hidden vertex set X such that |X| ≥ 2
3HV(P). □

Theorem 8.30 Let P be a simple polygon with n vertices, including c convex
vertices, then a hidden vertex set X, with c|X| ≥ 2HV(P), can be computed in
O(n6).

Proof This theorem is indeed an immediate generalization of Theorem
8.29, and we sketch the main idea of it.

Let {vi}c
i=1 be the convex vertices of P in counter-clockwise order. Let Li

and Ri be left and right reflex intervals with regard to vi, and Si = Li ∪ Ri.
Further, let ti denote the number of vertices in P(vi, vi+1).

For each i ∈ [k], let li be the geodesic path from vi+1 to vi−1. Then, li
is indeed a reflex chain, without any intermediate vertices in Si. Thus,
the closed polygonal chain li ∪ P(vi−1, vi+1) indeed encloses a pseudo-
triangle, denoted as Qi.
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8.2. Pseudotriangle

Let fi be the size of maximum hidden vertex set in Si. Hence, for any
u, v ∈ Si, we have

uv ⊆ P ⇐⇒ uv ⊆ Qi.

Thus, for any X ⊆ Si, X is a hidden vertex set in P as long as it is a
hidden vertex set in Qi. Accordingly, it can be computed via the dynamic
programming in Theorem 8.28, where we need to deal with at most t3

i−1t3
i

proper pairs.

Therefore, to compute the fi for all i ∈ [c], the number of proper pairs
we need to deal with is at most

c

∑
i=1

t3
i−1t3

i ≤
c

∑
i=1

t6
i .

Notice that ∑c
i=1 ti ≤ 2n and ti ≤ n, then we have

c

∑
i=1

t6
i ≤ (2n)6.

Therefore, there are at most O(n6) proper pairs, and each of them takes
O(1) to compute, so the overall time complexity is O(n6).

Meanwhile, Let OPT be the maximum hidden vertex set of P, then we
have

c

∑
i=1

|OPT ∩ Si| ≥ 2|OPT|.

Thus, we have maxc
i=1{ fi} ≥ 2

c |OPT|, which provides us with a solution
that is at least 2

c -competitive. □
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8. Funnel Polygon and PseudoTriangle

Figure 8.7: This figure illustrates the algorithm in Theorem 8.30, where c = 4. As is showed,
l2 is the geodesic path from v3 to v1, and Q2 is the pseudotriangle by blue color which is
filled.
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Chapter 9

Fan-shaped Polygon and Terrain

In this chapter, we will show that both the maximum hidden vertex set
and the maximum hidden point set of the fan-shaped polygon P and a
terrain T can be solved efficiently in polynomial time. The algorithm for
HV(P) is already argued about in [28], of which we will give an alterna-
tive proof. After that, we will propose our algorithm, by which hidden
point problem in fan-shaped polygon and terrain is firstly resolved so
far.

9.1 Terrain

Definition 9.1 A terrain T is a polygonal chain T = (p0, p1, · · · , pn−1) such
that it is strictly x-monotone, which means that ∀i ∈ [0, n − 2], xpi < xpi+1 .

Further, p0 and pn−1 is called the left and right endpoint of T.

Let u, v be two points such that u ∈ T and v ∈ T, then u and v is considered to
visible to each other if uv lies completely above T.

Definition 9.2 Let T be a terrain, its visibility graph VG(T) is defined as
VG(T) = (V, E), where V is the vertices of T, and E is the edges connecting
the pair of vertices which are visible to each other.

To characterize and recognize the visibility graph of terrain is considered
an open problem. Up to now, no equivalent characterization of VG(T)
has already be discovered. Previously, there are two necessary properties
proved in [2], in which they are together called ”persistence”.
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9. Fan-shaped Polygon and Terrain

Definition 9.3 Let G be a graph with (p0, p1, · · · , pn−1) as a Hamiltonian
path in G, then G is called a persistent graph if G satisfies the following two
conditions:

• X-property For each tuple (a, b, c, d) such that 0 ≤ a < b < c < d < n,
if (pa, pc) ∈ G and (pb, pd) ∈ G, we have (pa, pd) ∈ G.

• Bar-property For each pair of i, j ∈ [0, n − 1] such that i + 2 ≤ j, if
(pi, pj) ∈ G, there exists k ∈ [i + 1, j − 1] such that (pi, pk) ∈ G and
(pk, pj) ∈ G.

Lemma 9.4 Let T be a terrain, then VG(T) is a persistent graph [2].

Since the persistence property was proposed, it has been conjectured to
also be the sufficient condition for a Hamiltonian graph G be a visibility
graph of some terrain T for a long period. However, recently it has been
shown that persistence is not enough in [8] by giving a persistent graph
with 35 vertices, which is not the visibility graph of any terrain.

Similar to the polygon, based on the visibility, we can further define the
hidden point set and hidden vertex set for a terrain.

Definition 9.5 Let T be a terrain, and X be a set of points.

X is called a hidden point set in T if X ⊆ T, and any two points in X is invisible
to each other. The largest possible size of the hidden point set in T is denoted as
HP(T).

X is called a hidden vertex set in T if X ⊆ V(T), and any two points in X is
invisible to each other. The largest possible size of the hidden vertex set in T is
denoted as HV(T).

9.2 Relation between Terrain and Fan-shaped
Polygon

In this section, we will show that the visibility graph of a terrain T is
actually equivalent to the visibility graph of some fan-shaped polygon P,
excluding the hub vertex, and vice versa.

Lemma 9.6 Let T = (p1, p2, · · · , pn−1) be a terrain, then there exists p0 such
that P = (p0, p1, · · · , pn−1) is fan-shaped polygon with p0 ∈ hub(P) and p0
lies above T.

Proof We first explicitly construct such p0 and then prove its correctness.
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9.2. Relation between Terrain and Fan-shaped Polygon

Figure 9.1: p0 is the added hub vertex which transforms the terrain T into a fan-shaped
polygon P.

For each i ∈ [1, n − 2], consider the close half-plane H+
i which is above

the line pi pi+1. Let pi = (xi, yi), then the equation of the line pi pi+1 is
given by

(x − xi)(yi+1 − yi)− (y − yi)(xi+1 − xi) = 0.

For any two distinct points a, b with xa ̸= xb, denote the slope of ab as
k(a, b), and k(a, b) = (ya − yb)(xa − xb). As xi+1 − xi > 0, we have

H+
i = {(x, y)|y ≥ fi(x) = k(pi, pi+1)(x − xi) + yi}.

Let x0 = (x1 + xn−1)/2, y0 = max({ fi(x0)}n−2
i=1 ∪ {x0, xn−1}) + d, (d > 0),

then we get ∀i ∈ [0, n − 2], p0 = (x0, y0) ∈ H+
i .

Let P = (p0, p1, · · · , pn−1), we will argue that ∀u ∈ T, p0u ⊆ P, implying
that P is a fan-shaped polygon and p0 ∈ hub(P).

For the sake of contraction, suppose that there exists u ∈ T such that
p0u ̸⊆ P. Further, we assume that xu ≤ x0. If xu = x0, since T is x-
monotone, u is the unique intersection of T and p0u. Otherwise, we have
xu < x0.

Further, since p0u ̸⊆ P, there exists point v ̸= u, v ∈ pi pi+1, such that
v = p0u ∩ pi pi+1. Then, there exists a vertex pt ∈ T[u, pn−1] such that
xpt > xu and pt strictly lies above the line p0u, and further suppose that
pt is the first vertex to do so.
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9. Fan-shaped Polygon and Terrain

The equation of p0u is given by y = k(u, p0)(x − xu) + yu, notice that pt
is the first vertex above the line p0u, thus we have

yt > k(u, p0)(xt − xu) + yu,
yt−1 ≤ k(u, p0)(xt−1 − xu) + yu.

Therefore, k(pt−1, pt) > k(u, p0) ≥ k(p0, pt−1). Given that H+
t−1 =

{(x, y)|y ≥ ft−1(x)}, we have

ft−1(x0) = k(pt−1, pt)(x0 − xt−1) + yt−1

ft−1(x0)− y0 = k(pt−1, pt)(x0 − xt−1)− (y0 − yt−1)

= (x0 − xt)(k(pt−1, pt)− k(p0, pt−1))

> 0.

Thus, we have p0 = (x0, y0) /∈ H+
t−1, leading to a contradiction.

Therefore, P = (p0, p1, · · · , pn−1) is indeed a fan-shaped polygon and
p0 ∈ hub(P). □

From Lemma 9.6, we can see that a terrain T can always be extended to
a fan-shaped polygon P by connecting two endpoints to the introduced
hub vertex p0 above the terrain T. Then, naturally the following question
comes out, given a fan-shaped polygon P = (p0, p1, · · · , pn−1) with
p0 ∈ hub(P), is the polygonal chain (p1, · · · , pn−1) always a terrain as
well? The answer is negative, and as is shown in the following figure 9.2,
we can not place an x-axis on the figure such that it is x-monotone.

Figure 9.2: The polygonal chain (p1, · · · , pn−1) is not a terrain

However, in terms of the visibility graph itself, we can see that VG(P) \ p0
is actually identical to the visibility graph of some terrain T by this
following lemma.
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Lemma 9.7 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon and p0 ∈
hub(P), then there exist a terrain T = (q1, · · · , qn−1) and a continuous map-
ping f : P(p1, pn−1) → T such that:

• ∀i ∈ [n − 1], f (pi) = qi,

• ∀u, v ∈ P(p1, pn−1), uv ⊆ P if and only if f (u) f (v) lies completely
above the terrain T.

The explicit construction is proposed in [45] by elevating the hub vertex
p0 into R3 and then projecting the remaining vertices through p0 onto
another plane. This implies that the visibility graph of a fan-shaped
polygon, excluding the hub vertex, is indeed equivalent to the visibility
graph of a terrain. Therefore, put Lemma 9.6 and Lemma 9.7 together,
we can immediately give a characterization of VG(P).

Lemma 9.8 Let G be a simple graph, G is the visibility graph of some fan-
shaped polygon P if and only if there exists a universal vertex u, which is
adjacency to all the other vertices, such that G \ u is the visibility graph of a
terrain T.

Remark 9.9 This does not mean that we can already efficiently recognize the
visibility graph of a fan-shaped polygon since we do not know how to deal with
terrain itself yet.

By the following lemmas, we can see that finding the maximum hidden
vertex set or maximum hidden point set in a terrain, is indeed the same
as in a fan-shaped polygon.

Lemma 9.10 Let T = (p1, p2, · · · , pn−1) be terrain, P = (p0, p1, · · · , pn−1)
be a fan-shaped polygon such that p0 ∈ hub(P) and p0 lies above T. Then the
following proposition stands.

• (a) HV(P) = HV(T), and ∃ X ⊆ V(T) such that X = HV(P), and X
is a hidden vertex set of both P and T.

• (b) HP(P) = HP(T), and ∃ X ⊆ T such that X = HP(P), and X is a
hidden point set of both P and T.

Proof (a) is indeed trivial. Since VG(P) \ p0 = VG(T), and p0 is a
universal vertex in VG(P), we have HV(P) = HV(T). Meanwhile, {p0}
can not be the unique maximum hidden vertex set, thus we can always
find a maximum hidden vertex set X such that p0 ̸∈ X and X ⊆ V(T).

Then let us consider (b). Let H = {h1, h2, · · · , hk} be a maximum hidden
point set of P, and without loss of generality, we suppose that p0 ̸∈ H.
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9. Fan-shaped Polygon and Terrain

For each i ∈ [k], let li =
−−→
p0hi ∩ T. Since any point in P is visible to p0, we

have p0hi ⊆ P, thus li is connected, and of course not empty. Further, let
si be a point in li, and S = {si}k

i=1.

Next we will argue that S is indeed a hidden point set in both P and T.
For any i ̸= j, it is clear that p0, hi and hj are not collinear, and denote the
triangle conv({p0, hi, hj}) as Ci,j. Since p0hi ⊆ P, p0hj ⊆ P, and hihj ̸⊆ P,
there exists a vertex r ∈ V(T), such that r ∈ int(Ci,j), and r lies strictly
above hihj. Hence, notice that p0hi ⊆ p0si and p0hi ⊆ p0si, we have
r ∈ int(conv({p0, si, sj})), and r also lies strictly above sisj. Therefore,
sisj ̸⊆ P, and sisj does not lie completely above T. This indicates that S is
indeed a hidden point set with regard to both P and T. □

Accordingly, finding the maximum hidden point/vertex set in a terrain
T = (p1, · · · , pn−1) could take the following three steps.

1. Find the vertex p0 such that P = (p0, p1, · · · , pn−1) is a fan-shaped
polygon, and p0 ∈ hub(P).

2. Figure out the maximum hidden point/vertex set S in P.

3. Relocate S to S′ such that S′ ⊆ T, and S′ is a hidden set with regard
to T.

The procedure in step 3 could follow the proof of Lemma 9.10. There-
fore, as long as we solve these problems in the fan-shaped polygon, we
immediately solve them in the terrain as well.

9.3 Hidden Vertices in Fan-shaped Polygon and
Terrain

Lemma 9.11 Let P = (p0, p1, · · · , pn−1). Let pi, pj, i < j be two vertices such
that IP(pi, pj) = 0 and k be the smallest integer in the interval [i, j] such that
IP(pk, pj) = 1. Then ∀u ∈ [i, k − 1], v ∈ [k + 1, j], we have IP(pu, pv) = 0,
which means they are invisible to each other.

Proof Suppose the contradiction that there exist u ∈ [i, k − 1], v ∈ [k +
1, j] such that IP(pu, pv) = 1. Since the visibility graph VG(P) \ {p0} is
persistent, it satisfies the X-property. Notice that pj is invisible to any
vertex pu with u < k, and then we have v < j. Therefore, consider the
tuple (u, k, v, j) with u < k < v < j, give that (pu, pv) ∈ VG(P) and
(pk, pj) ∈ VG(P), by Definition 9.3, we have (pu, pj) ∈ VG(P), which
violates the minimality of the integer k. □
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Definition 9.12 Let P = (p0, p1, p2, · · · , pn−1) be a fan-shaped polygon and
p0 ∈ hub(P), then the subfan sub(P, l, r) is defined by the following:

sub(P, l, r) := (p0, pl, pl+1, · · · , pr).

Lemma 9.13 Let P = (p0, p2, p2, · · · , pn−1) be a fan-shaped polygon and
p0 ∈ hub(P), then we can compute {HV(sub(P, l, r))|∀l ≤ r} in time com-
plexity O(n2) by dynamic programming.

Proof We first sketch the dynamic programming, then prove its correct-
ness and efficiency.

Let f (i, j) denote the size of maximum hidden vertex set for the subfan
sub(P, i, j). It is clear that since p0 is visible to any vertex, p0 itself will
never become the unique optimal solution. Therefore, we only need to
take vertices pi, pi+1, · · · , pj into consideration.

If i = j, the optimal solution is to pick the vertex pi, and f (i, j) = 1 clearly.
Otherwise, we could compute f (i, j) by the following formula,

f (i, j) =

{
max{ f (i + 1, j), f (i, j − 1)}, IP(pi, pj) = 1,
max{ f (i + 1, j), f (i, j − 1), f (i, k − 1) + f (k + 1, j)} IP(pi, pj) = 0.

where k is the smallest integer in the interval [i, j] such that IP(pk, pj) = 1.

We prove this by induction on the length of interval [i, j].

Let m = j − i + 1. If m = 1, we have i = j and the optimal solution
f (i, j) = 1 holds clearly.

Suppose that ∀m = j − i + 1 ≤ l, f (i, j) = HV(sub(P, i, j)). Consider the
case m = l + 1.

Let A be the maximum hidden vertex set for sub(P, i, j). There are in
total three cases.

• pi /∈ A, then A is actually the optimal solution for sub(P, i + 1, j),
|A| = HV(sub(P, i + 1, j)) = f (i + 1, j).

• pj /∈ A, then A is actually the optimal solution for sub(P, i, j − 1),
|A| = HV(sub(P, i, j − 1)) = f (i, j − 1).

• pi ∈ A ∧ pj ∈ A, this can only take place when IP(pi, pj) = 0.
Notice that we have pk and pj are visible to each other, then
pk /∈ A. Hence, by Lemma 9.11, we have {pi, pi+1, · · · , pk−1}
and {pk+1, pk+2, · · · , pj} are invisible to each other. Therefore,
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A is composed by the maximum hidden vertex set of subfan
sub(P, i, k − 1) and subfan sub(P, k + 1, j), |A| = HV(sub(P, i, k −
1)) + HV(sub(P, k + 1, j)) = f (i, k − 1) + f (k + 1, j).

Thus, the induction is completed.

Further, the number of pairs (i, j) is in O(n2), and each f (i, j) takes O(1)
time to compute. Meanwhile, note that computing k for all (i < j) also
takes O(n2). Therefore, the overall time complexity is O(n2). □

Corollary 9.14 Let T = (p0, p1, · · · , pn−1) be terrain with n vertices, then we
can compute HV(T(pl , pr)) for all l ≤ r in time complexity O(n2) by dynamic
programming.

Proof This corollary is implied by Lemma 9.6 and Lemma 9.13. □

Corollary 9.15 Let P be fan-shaped polygon, and S ⊆ V(P) be a subset of
vertices. The maximum hidden vertex set in S can be computed in O(n2) time.

Proof This can be achieved by adapting the dynamic programming in
Lemma 9.13, by avoiding any vertex in V(P) \ S in the optimal solution
of any subproblem. □

9.4 Hidden Points in Fan-shaped Polygon

In this section, we will introduce how to efficiently compute the maxi-
mum hidden points in fan-shaped polygon and terrain.

9.4.1 Partially Ordered Set

Definition 9.16 A partially ordered set (poset) P is a pair P = (X,≼), where
X is the set of elements and ≼ is a binary relation (partial order) on X satisfying
the following properties:

• Reflexivity: ∀x ∈ X, x ≼ x.

• Antisymmetry: ∀x, y ∈ X, if x ≼ y and y ≼ x, then x = y.

• Transitivity: ∀x, y, z ∈ X, if x ≼ y and y ≼ z, then x ≼ z.

Further, we denote x ≺ y if x ≼ y and x ̸= y. Besides, we write x ≻ y
and y ≻ x if neither x ≼ y nor y ≼ z.

Definition 9.17 Let P = (X,≼) be a partially ordered set. A ordered list
of elements L = (x1, x2, · · · , xk), is call a chain if ∀ i ∈ [k − 1], we have
xi ≼ xi+1.
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Definition 9.18 Let P = (X,≼) be a partially ordered set, and C ⊆ X be a
subset of elements. C is called an antichain if ∀x, y ∈ C, x ̸= y, we have x ≻ y
and y ≻ x.

Further, the largest antichain of P is the antichain in P with largest possible
number of elements, and the its size is denoted as µ(P).

Indeed, a chain is a subset of elements such that the partial order ≼
restricted on it becomes a total order, and an antichain is a subset of
elements where each two of them are not comparable. For instance, let X
be the set of positive integers and | be the binary relation such that a|b if
and only if a is a divisor of b. Thus, all the powers of 2 compose a chain
and all the primes form an antichain.

Definition 9.19 Let P = (X,≼) be a finite partially ordered set. A chain
decomposition of P is a collection of chains {C1, C2, · · · , Ck} such that

Ci ∩ Cj = ∅, ∀ i ̸= j,

X =
k⋃

i=1

Ci.

Further, the minimum chain decomposition of P is such collection C with the
smallest number of chains, and we denote its size as ν(P).

Based the above preliminary, we could introduce the most fundamental
theorem of the partially ordered set.

Theorem 9.20 Dilworth’s Theorem : Let P = (X,≼) be a partially ordered
set, then the minimum chain decomposition of P has the same size of the largest
antichain of P , which means ν(P) = µ(P).

Proof This is proved in [18]. □

Let us make an example on the inclusion, which is a partial order on
sets. Let U = {x, y, z} be the ground set. Let X be the collection of all the
subsets of U, ≼ be the relation such that A ≼ B if A ⊆ B, and P = (X,≼)
be the partially ordered set. P is illustrated as the following figure 9.3.

Accordingly, one of the largest antichain of P is A = {{x}, {y}, {z}},
and one of the minimum chain decomposition of P is C = {L1, L2, L3},
where L1 = {∅, {x}, {x, y}, {x, y, z}}, L2 = {{y}, {y, z}}, and L3 =
{{z}, {x, z}}. Indeed, they have the same size |A| = |C| = 3.
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Figure 9.3: A ≼ B if and only if there is a directed path routed from A to B in the graph.

9.4.2 Poset in Fan-shaped Polygon

In this subsection, we could define a partially ordered set on the edges
of fan-shaped polygon. Before that, we need to discuss some basic
propositions about the visibility between the edges.

Lemma 9.21 Let P = (p0, p1, · · · , pn) be a simple polygon, and ei = (pi, pi+1),
ej = (pj, pj+1) be two edges, then the following three propositions are equivalent:

• (a) ∀ u ∈ {pi, pi+1}, v ∈ {pj, pj+1}, IP(u, v) = 1.

• (b) ∀ u ∈ pi pi+1, v ∈ pj pj+1, IP(u, v) = 1.

• (c) X = {pi, pi+1} ∪ {pj, pj+1}, vertices in X are in convex position and
conv(X) ⊆ P.

Proof (a) =⇒ (c): By Lemma 6.9, since X = {pi, pi+1} ∪ {pj, pj+1} is a
clique in VG(P), then vertices in X are in convex position and conv(X) ⊆
P.

(c) =⇒ (b): ∀u ∈ pi pi+1, v ∈ pj pj+1, we have uv ⊆ conv(X) ⊆ P, indicat-
ing that IP(u, v) = 1.

(b) =⇒ (a): This is trivial. □

Then we are ready to define the partial order on the edges of the fan-
shaped polygon.

Lemma 9.22 Let P = (p0, p1, · · · , pn) be a fan-shaped polygon, and p0 ∈
hub(P). Let ei = (pi, pi+1), ej = (pj, pj+1) be two edges of P.

Let ≼ be a binary relation. For i ∈ [n − 2], j ∈ [n − 2], ei ≼ ej if and only if

[i ≤ j] ∧ [∀u ∈ ei, v ∈ ej, IP(u, v) = 1].
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Then, ≼ is indeed a partial order.

Proof The reflexivity and antisymmetry of ≼ is clear to hold, and we
will prove the transitivity of ≼.

Let ei, ej, ek be three edges such that ei ≼ ej and ej ≼ ek, and we will argue
that ei ≼ ek.

Without loss of generality, we assume that ei, ej and ek are disjoint, which
means they do not share any common vertex1. Specifically, we have
i + 1 < j and j + 1 < k.

Consider any u ∈ {pi, pi+1} and v ∈ {pk, pk+1}. Since ei ≼ ej, we have
IP(u, pj+1) = 1. Similarly, since ej ≼ ek, we have IP(pj, v) = 1.

Notice that u, pj, pj+1, v are in order, and IP(u, pj+1) = IP(pj, v) = 1. By
the X-property in Definition 9.3, we know that IP(u, v) = 1.

Therefore, ∀u ∈ {pi, pi+1}, v ∈ {pk, pk+1}, we have IP(u, v) = 1. By
Lemma 9.21, we know that this is equivalent to ei ≼ ek, thus justifying
the transitivity and completing the proof. □

According to this partial order, we can further define the partially order
set in a fan-shaped polygon.

Definition 9.23 Let P = (p0, p1, · · · , pn−1) be fan-shaped polygon and p0 ∈
hub(P).

Then, the visibility partially ordered set of P, denoted as VP(P), is defined as
VP(P) := (X,≼), where X = {ei = (pi, pi+1)|i ∈ [n − 2])}, and ei ≼ ej if
and only if

[i ≤ j] ∧ [∀u ∈ ei, v ∈ ej, IP(u, v) = 1].

In the following lemmas, we will show that this poset is closely related
to the hidden point set and convex covering of the fan-shaped polygon.

Lemma 9.24 Let P be a fan-shaped polygon, and P = VP(P) be its visibility
partially ordered set. Then, Cover(P) ≤ ν(P).

Proof Let C be a chain in P , and C = (l1, l2, · · · , lm), where li = eti =
(pti , pti+1), ti ∈ [n − 2].

Let XC =
⋃m

i=1{pti , pti+1}. Since C is a chain in P , vertices in XC are
pairwisely visible, and thus XC is a clique in VG(P). Further, since p0

1We can not say the arguments for the other cases are the same, but they are indeed
easier to deal with.
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is visible to every vertex in XC, XC ∪ {p0} is also a clique in VG(P). Let
YC = XC ∪ {p0}. By Lemma 6.9, vertices in YC are in convex position,
and conv(YC) ⊆ P. Denote the conv(YC) as f (C), which is the convex
hull induced by C.

Let C = {C1, C2, · · · , Ck} be a minimum chain decomposition of P , and
k = ν(P). For each i ∈ [k], let Qi = f (Ci) be the convex hull induced by
Ci. Hence, for each i ∈ [n − 2], there exists j ∈ [k], such that ei ∈ Cj, thus
the triangle (p0, pi, pi+1) ⊆ Qj.

Notice that P =
⋃n−2

i=1 (p0, pi, pi+1), we have P =
⋃k

i=1 Qi, implying that
Q = {Q1, Q2, · · · , Qk} is a convex cover of P and Cover(P) ≤ ν(P). □

Lemma 9.25 Let P be a fan-shaped polygon, and P = VP(P) be its visibility
partially ordered set. Then, HP(P) ≤ µ(P).

Proof Let H = {h1, h2, · · · , hk} be a maximum hidden point set in H, and
k = HP(P). By Lemma 9.10, we can further assume that H ⊆ P(p1, pn−1).
For each i ∈ [k], let si = (pti , pti+1) be the edge including the point hi (if
there are multiple ones then choose any of them).

Then, we can see that for any i ̸= j, we have neither si ≼ sj nor sj ≼ si.
Otherwise, hi and hj should be visible to each other. Therefore, we can
see that {si}k

i=1 is indeed an antichain in P , and thus HP(P) ≤ µ(P). □

Remark 9.26 This can be induced immediately by Lemma 9.24, since HP(P) ≤
Cover(P) and µ(P) = ν(P).

9.4.3 Find Maximum Hidden Point Set in O(n2)

In this subsection, we present the algorithm to find the maximum hidden
point set of a fan-shaped polygon in O(n2).

Overview of the algorithm. Let P = (p0, p1, · · · , pn−1) be a fan-shaped
polygon, and p0 ∈ hub(P). For each edge ei = (pi, pi+1) ∈ [n − 2], we
locate two points {αi, βi} ⊆ ei such that, if vertex pi is invisible to vertex
pj, then we have ∀u ∈ {βi−1, αi}, ∀v ∈ {β j−1, αj}, u is invisible to v.
Intuitively speaking, we are trying to arrange αi sufficiently close to pi,
and βi sufficiently close to pi+1. And of course, we will show that such
{αi}n−2

i=1 and {βi}n−2
i=1 can be computed in polynomial time. After that,

we will show that among these candidates {αi}n−2
i=1 ∪ {βi}n−2

i=1 , we can
find a hidden point set, which is indeed the maximum hidden point set
of P. Such technique can also be utilized to present a constant factor
approximation for maximum hidden point set in a simple polygon [10].
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First, we present the explicit construction of the set {αi}n−2
i=1 and {βi}n−2

i=1
in the following definition.

Definition 9.27 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon, and
p0 ∈ hub(P). Denote (pi, pi+1) ∈ E(P) as ei.

For each i ∈ [n − 1], denote Qi as the set of Steiner points in VisP(pi).

For any 0 < i < j < n, let pathi,j denote the geodesic path from vertex pi to pj,
and interi,j be the set of intermediate vertices of pathi,j.

interi,j := V(pathi,j) \ {pi, pj}.

Let li,j, 0 < i < j < n, be defined as the following,

li,j :=

{
line(u,−→pi pj), interi,j = {u},
∅, otherwise,

where line(u,−→v ) denote the the line passing u and parallel to −→v .

We define Yi, i ∈ [n − 2] as the following,

Yi :=
n−1⋃
j=1

ei ∩ Qj

⋃
j<i

int(ei) ∩ lj,i

⋃
j>i

int(ei) ∩ li+1,j.

Accordingly, let αi ∈ int(ei) such that piαi ∩ Yi = ∅, and βi ∈ int(ei) such
that βi pi+1 ∩ Yi = ∅.

Then, we will prove that such explicit construction indeed preserves the
invisibility based on the following propositions.

Proposition 9.28 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon, and
p0 ∈ hub(P). Let e = (u, v) be an edge of P, r be a point in P, and e∩Vis(r) ̸=
∅. Then we have either u ∈ Vis(r) or v ∈ Vis(r).

Proof We prove this by contradiction. Suppose the opposite that there
exists a point r and an edge e = (u, v) such that u ̸∈ Vis(r), v ̸∈ Vis(u),
and Vis(u) ∩ uv ̸= ∅.
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Notice that Vis(r) ∩ uv is connected since P is a simple polygon. There-
fore, there exists s ∈ uv and t ∈ uv such that Vis(u)∩ uv = st. We further
assume that u, s, t, v are in counter-clockwise order.

Since s is a Steiner point of Vis(r), there exists a reflex vertex pi, and
pi ∈ int(rs). Similarly, there exists a reflex vertex pj and pj ∈ int(rt).

Let H+
s,r and H+

r,t be the open half-planes on the left hand side of −→sr and
−→
rt respectively. Clearly, we can see that u ∈ H+

s,r and v ∈ H+
r,t.

Now let’s consider the location of p0. Indeed, we have p0 ̸∈ H+
s,r, oth-

erwise p0 is invisible to either r or u, contradicting that p0 ∈ hub(P).
Similarly, we have p0 ̸∈ H+

r,t. Meanwhile, rp0 can not properly intersect
with uv. Therefore, we have p0 in the triangle (r, s, t) and thus further
p0 ∈ conv({r, u, v}).

However, since p0 ∈ hub(P), we know that p0r ⊆ P, p0s ⊆ P and p0t ⊆ P.
Since p0 ∈ int(conv({r, u, v})), it is impossible to include these three ver-
tices in a convex interior angle at vertex p0, leading to the contradiction.

Figure 9.4: This figure illustrates the proof of Proposition 9.28.

Corollary 9.29 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon. Let
e = (u, v) be an edge of P, r be a point in P. If r is invisible to both u and v,
then ∀w ∈ uv, r is invisible to w as well.

Proof This is the contrapositive of Proposition 9.28. □
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Proposition 9.30 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon, and
p0 ∈ hub(P). Let {αi}n−2

i=1 and {βi}n−2
i=1 follow their definitions in Definition

9.27.

Let pi, pj be two vertices in P and IP(pi, pj) = 0, then we have IP(βi−1, pj) = 0
and IP(αi, pj) = 0.

Proof We only prove this for αi, as the argument for βi−1 is similar.

Let ei = (pi, pj), and consider Vis(pj) ∩ ei. By Proposition 9.28, since
IP(pi, pj) = 0, there are two different cases.

• Vis(pj) ∩ ei = ∅, then of course αi ̸∈ Vis(pj), and IP(αi, pj) = 0.

• Vis(pj) ∩ ei ̸= ∅, then there exists point r ∈ int(ei) such that
Vis(pj) ∩ ei = rpi+1, where r is a Steiner point of Vis(pj). But, by
our construction of αi, we have r ̸∈ piαi, and piαi ∩ rpi+1 = ∅,
implying that IP(αi, pj) = 0. □

Lemma 9.31 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon, and p0 ∈
hub(P). Let {αi}n−2

i=1 and {βi}n−2
i=1 follow their definitions in Definition 9.27.

Let pi, pj be two vertices of P, and IP(pi, pj) = 0, then we have ∀u ∈
{βi−1, αi}, ∀v ∈ {β j−1, αj}, IP(u, v) = 0.

Proof Let S = {αi}n−2
i=1 ∪ {βi}n−2

i=1 , and T = V(P(p1, pn−1)). We define
f : S → T such that

∀i ∈ [n − 2], f (αi) = pi, f (βi) = pi+1.

Further, we say that αi is associated to vertex pi, and βi is associated to
vertex pi+1. Intuitively, by saying u associated to v, we indicates that
u is very close to v and their visible areas are quite similar, though by
definition v is not necessarily the vertex closest to point u.

We will prove that ∀u, v ∈ S, if f (u) is invisible to f (v), then u is also
invisible to v. In this way, (u, v) preserves the invisibility of ( f (u), f (v)).

Suppose that (a, b), (c, d) be two edges of P(p1, pn−1) such that

u ∈ (a, b), f (u) = b, v ∈ (c, d), f (v) = c.

Without loss of generality, we assume that {a, b} ∩ {c, d} = ∅, and (a, b)
appears before (c, d) in the polygonal chain P(p1, pn−1). By our definition,
we have b is invisible to c.
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If b is invisible to both c and d, then by Proposition 9.30, we have u is also
invisible to both c and d. By Corollary 9.29, we know that u is indeed
invisible to v.

Similarly, if c is invisible to both a and b, we also have u is indeed
invisible to v.

Therefore, we could further assume that IP(a, c) = IP(b, d) = 1. Then,
let’s consider the order of the vertex {a, b, c, d} in P, which should be in
counter-clockwise order. There are four different cases to consider.

• (b, a, d, c). This case is actually impossible. Since IP(a, c) = IP(b, d) =
1, by the X-property in Definition 9.3, we have IP(b, d) = 1, contra-
dicting the assumption.

• (b, a, c, d). In this case, C = (b, a, c, d) is an ordered cycle of length
four in VG(P). By Lemma 2.25, C has at least one chord. By
assumption, (b, c) can not be a chord, and then IP(a, d) = 1. In this
case, the general position of them is shown in the following figure,
where a is in the interior of the triangle (b, c, d).

Figure 9.5: This figure illustrates the case of (b, a, c, d).

Clearly, we can see that there exist s ∈ int(cd), and s is a Steiner
point of Vis(b). Thus, by our construction, we have v ∈ int(cs),
implying that IP(u, v) = 0.

• (a, b, d, c). This case is similar to the case (b, a, c, d) so we omit the
proof here.

• (a, b, c, d). This case is the most complicated one, and also the only
reason why we need to introduce {li,j}i<j in Definition 9.27.

Let b = pi and c = pj with i < j. Let pathi,j and li,j follow their
definitions in Definition 9.27.
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Since pi pj ̸⊆ P, pathi,j is a polygonal chain in P with at least three
vertices. By Theorem 1 in [28], pathi,j is indeed a reflex chain, and
V(pathi,j) ⊆ V(P(pi, pj)). Thus, let pathi,j = {pi, w1, · · · , wk, pj}.

If k = 1, then li,j = line(w1,−→pi pj). Since pi, pj, u, v all lie on the same
side of li,j, we have (u, w1, v) is a reflex chain in P (if we consider u
and v as the vertices of P). Thus, we have IP(u, v) = 0.

If k > 1, we have IP(pi, w2) = IP(wk−1, pj) = 0. Further, by
Proposition 9.30, we have IP(u, w2) = IP(wk−1, v) = 0. In fact,
C = (u, w1, · · · , wk, v) is also a reflex chain in P, if we consider u
and v as the vertices of P. Thus, we have IP(u, v) = 0.

Figure 9.6: This illustrates the proof of the case (a, b, c, d).

Therefore, we conclude that ∀u ∈ S, v ∈ S, as long as IP( f (u), f (v)) = 0,
we have IP(u, v) = 0, thus completing the proof. □

By the last lemma, we can see that such construction indeed preserves the
invisibility. Actually, in the next lemma, we show that what we achieved
is much more than that. Instead of merely preserving the invisibility, we
are also creating the invisibility at the same time.

Lemma 9.32 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon, and p0 ∈
hub(P). Let P = (X,≼) = VP(P) be the visibility partially ordered set of P.
Let {αi}n−2

i=1 and {βi}n−2
i=1 follow their definitions in Definition 9.27.

Let ei = (pi, pi+1), ej = (pj, pj+1) be two edges of P, and i < j. If {ei, ej} is
an antichain in P , then IP(βi, αj) = 0.

Proof We first consider the trivial case, in which j = i + 1. Since
{ei, ei+1} is a antichain, we have pi+1 is a reflex vertex in P, indicat-
ing that IP(βi, αi+1) = 0.

Other than the trivial case, we always have i + 1 < j, and ei ∩ ej = ∅. If
IP(pi+1, pj) = 0, by Lemma 9.31, we already have IP(βi, αj) = 0.
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Otherwise, suppose that IP(pi+1, pj) = 1. Accordingly, let L = (pi, pi+1,
pj, pj+1) be the polygonal chain, and L ⊆ P. Note that L can not be a
convex chain in P, otherwise we would have ei ≼ ej. Therefore, either
(pi, pi+1, pj) is a reflex chain or (pi+1, pj, pj+1) is a reflex chain.

Without loss of generality, suppose that (pi, pi+1, pj) is a reflex chain. We
can see that this is indeed the second case we already dealt with in the
proof of Lemma 9.31. Similar to that, we can see that IP(βi, αj) = 0.

Therefore, we conclude that if {ei, ej} is an antichain, we always have
IP(βi, αj) = 0. □

The reason why this creates the invisibility is that in Lemma 9.32, pi and
pj do not necessarily to be invisible. As long as {ei, ej} is an antichain in
P , we always have IP(βi, αj) = 0.

Lemma 9.33 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon, and p0 ∈
hub(P). Let P = (X,≼) = VP(P) be the visibility partially ordered set of P.

Let L = {l1, l2, · · · , lk} be an antichain in P , then we can find a hidden point
set H = {h1, h2, · · · , hk} in P, such that ∀i ∈ [k], hi ∈ li.

Proof Let li = eti = (pti , pti+1), and ∀i ∈ [k − 1], we assume ti < ti+1.

Let ai = αti , and bi = βti . We prove the following statement by induction:
Let M = {b1} ∪ (

⋃k−1
i=2 {ai, bi}) ∪ {ak}. There exists H ⊆ M, such that H

is a hidden point set, and |H| = k.

For the case k ≤ 2, it is trivial. Suppose that ∀k ≤ m, the statement holds,
and consider the case for k = m + 1.

Similar to Lemma 9.32, we know that IP(b1, am+1) = 0. By Lemma
9.11, there exists a blocking vertex pj ∈ P(b1, am+1) such that ∀u ∈
P(b1, pj) \ {pj}, v ∈ P(pj, am+1) \ {pj}, IP(u, v) = 0.

Let m′ be the largest integer in [m + 1] such that tm′ < j. Let M1 = {b1} ∪
(
⋃m′−1

i=2 {ai, bi}) ∪ {am′} and M2 = {bm′+1} ∪ (
⋃m

i=m′+2{ai, bi}) ∪ {am+1}.

By induction, there exists a hidden point set H1 ⊆ M1, |H1| = m′ and
another hidden point set H2 ⊆ M2, |H2| = m − m′ + 1. Hence, ∀u ∈
H1, v ∈ H2, we have u ∈ P(b1, pj) \ {pj}, v ∈ P(pj, am+1) \ {pj}, thus
IP(u, v) = 0.

Therefore, H = H1 ∪ H2 is indeed a hidden point set, and |H| = m + 1,
thus completing the induction. □
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9.4. Hidden Points in Fan-shaped Polygon

Corollary 9.34 Let P = (p0, p1, · · · , pn−1) be a fan-shaped polygon. Let
P = (X,≼) = VP(P) be the visibility partially ordered set of P.

Then, HP(P) = Cover(P) = µ(P) = ν(P).

Proof This is implied by Lemma 9.24, Lemma 9.25, and Lemma 9.33. □

Theorem 9.35 Let P be a fan-shaped polygon on n vertices, and p0 ∈ hub(P),
then the maximum hidden point set of P can be computed in O(n2).

Proof Let {αi}n−2
i=1 , {βi}n−2

i=1 , {Qi}n−1
i=1 , {li,j}i<j, and {Yi}n−2

i=1 follow their
definitions in Definition 9.27.

First, we argue that {αi}n−2
i=1 and {βi}n−2

i=1 can be explicitly constructed in
O(n2). By Lemma 4.10, ∀i ∈ [n − 1], Qi can be computed in O(n), and
thus {Qi}n−1

i=1 is computable in O(n2).

Further, we can see that {li,j}i<j can also be in O(n2). ∀i < j, IP(pi, pj) =
0, we can find the smallest integer k = f (i, j) ∈ [i, j], such that IP(pk, pj) =

1, and { f (i, j)}i<j can be computed in O(n2). Accordingly, {li,j}i<j can
be computed in O(n2) since it takes O(1) to check whether pk is the only
intermediate vertex in the geodesic path from pi to pj.

Therefore, we can compute both {Qi}n−1
i=1 and {li,j}i<j in O(n2), and thus

{Yi}n−2
i=1 , {αi}n−2

i=1 and {βi}n−2
i=1 can be explicitly constructed in O(n2).

Let S = {αi}n−2
i=1 ∪ {βi}n−2

i=1 , by Lemma 9.33, there exists a hidden point
set H ⊆ S such that |H| = HP(P). Consider S as the vertices of P, by
Corollary 9.15, we can compute such maximum hidden point set H in
O(n2), thus concluding the algorithm. □
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Chapter 10

Conclusion

We conclude the thesis with the following conjectures and open problems.

• We conjecture that there exists constant c > 1, such that for any
simple polygon P, HP(P) ≤ cHV(P).

• Conjecture 3.20: There exists constant c > 0, such that for any
polygon P with h holes, HP(P) ≥ c

√
h stands.

• Conjecture 4.15: There exists constant C > 0, such that for any
simple polygon P, let S be its set system of visible areas, we have
dim(S) < C.

• We conjecture that the problem of finding the maximum hidden
point set of a simple polygon is in NPO. In other words, given a
simple polygon P, we can always find a maximum hidden point set
H, which has polynomial bit size.

• Conjecture 6.12: There exist constants ε > 0, c > 0 such that for any
simple polygon P on n vertices, max{α(VG(P)), ω(VG(P))} ≥ cnε.

• We conjecture that the maximum hidden vertex set of a pseudotri-
angle can be computed in polynomial time.

• Let P be a simple polygon on n vertices and c of them are con-
vex. We are interested in proposing a fixed parameter tractable
algorithm A, with time complexity O( f (k)poly(n)), which finds
the maximum hidden vertex set of P or at least provides us with a
non-trivial constant factor approximation.
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